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PREFACE 

 

In the rapidly evolving ϐield of electronics and embedded systems, a solid foundation in 
microprocessors and microcontrollers is essential for students in diploma and engineering 
disciplines. The 8085μp and 8051μc have been fundamental to studying digital electronics, 
providing students with a deep understanding of processor architecture, programming 
techniques, and interfacing concepts. Their simplicity and ease of implementation make 
them an ideal starting point for students stepping into microprocessor-based system 
design. 

This course material and question bank have been designed as a learning resource, 
enabling students to grasp core concepts, strengthen problem-solving skills, and reinforce 
theoretical knowledge through structured questions. The document is intended to support 
students in preparing for academic exams, tests, and practical applications by covering the 
essential topics in a well-organized manner. This course material and question bank will 
function as a self-study guide, a reference document, and a revision tool for students. I 
sincerely appreciate feedback and suggestions for improvement, as continuous 
enhancement is key to better learning experiences. 

 

Happy Learning! 

 

 

Vivek Harshey 

Asst Professor 

ECE Deptt. 
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Chapter 1. Introduction to Microprocessors 

A microprocessor is a programmable electronic chip with computing and decision-making 
capabilities similar to a computer’s central processing unit (CPU). A system built around a 
microprocessor with limited resources is referred to as a microcomputer. Today, 
microprocessors are embedded in nearly all electronic devices, including mobile phones, 
printers, washing machines, and home automation systems. Additionally, they play a 
critical role in advanced applications such as radar systems, satellites, and aerospace 
technology. The rapid advancement of the electronics industry and the development of 
large-scale integration (LSI) technology have led to signiϐicant cost reductions and 
increased adoption of microprocessors across various ϐields. A microprocessor is an 
integrated circuit (IC) that incorporates arithmetic, logic, and control circuitry, enabling it 
to interpret and execute instructions. As the core processing unit of a computing system, it 
facilitates the execution of computational and control tasks by coordinating with memory, 
input/output devices, and other peripherals. These interactions allow the microprocessor 
to execute operations as deϐined by user programs or system software, making it a 
fundamental component of modern digital and embedded systems. 

Advancements in microprocessor technology have resulted in improved clock speeds, 
reduced power consumption, and increased integration of functionalities such as ϐloating-
point arithmetic, cache memory, and multiple cores. Modern microprocessors now support 
parallel processing and artiϐicial intelligence capabilities, making them integral to various 
applications, from personal computing to industrial automation and embedded systems. 
One of the signiϐicant advantages of the 8085 microprocessor is its built-in serial 
communication capability, which facilitates data exchange between the processor and 
peripheral devices. It also includes ϐive hardware interrupt signals and eight software 
interrupts, enabling efϐicient handling of external and internal events. Additionally, the 
8085 supports both memory-mapped and I/O-mapped input/output operations, making it 
versatile for various interfacing applications. 

The 8085 microprocessor is an 8-bit microprocessor developed by Intel in 1976. It has a 
16-bit address bus, allowing it to address 64KB of memory. It operates on a +5V power 
supply and has a clock speed of 3 MHz. 8085 follows the von Neumann architecture, 
meaning both data and instructions share the same memory. It includes 74 instructions 
and supports ϐive hardware and eight software interrupts. 

1. Relevance of 8-bit Microprocessors in Academic Education 

Despite the availability of 32-bit and 64-bit microprocessors, the 8-bit microprocessor 
remains a highly suitable choice for teaching microprocessor concepts, even in the twenty-
ϐirst century. A signiϐicant reason for this is the widespread use of 8-bit microprocessors in 
industrial applications. Over 90% of microprocessor sales worldwide are accounted for by 
8-bit processors and single-chip microcontrollers. These processors have ϐirmly 
established themselves in industrial control systems, including machine control, process 
control, instrumentation, and consumer appliances. Such systems, incorporating 
microprocessors, are classiϐied as embedded systems or microprocessor-based products. 
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In contrast, 32-bit and 64-bit microprocessors are primarily utilized in microcomputers, 
workstations, and high-performance computing environments. Their processing power is 
well-suited for applications such as high-speed data processing, CAD/CAM operations, 
multitasking, and multiuser systems. However, in industrial control applications, 8-bit 
microprocessors continue to dominate and are unlikely to be replaced by their 32-bit and 
64-bit counterparts soon. 

i Why High-End Processors Are Not Ideal for Teaching Basic Concepts? 

Focusing on high-end Intel 32-bit and 64-bit processors for introductory microprocessor 
education is impractical. This situation can be compared to using large-scale integrated 
(LSI) devices to teach fundamental logic gate concepts such as AND, NAND, and OR. A 
simpler processor with a well-deϐined instruction set is required to grasp the fundamental 
principles of microprocessor architecture and programming. 

The Intel high-end processors are too complex for introductory courses due to their 
intricate architecture and extensive instruction set. These processors are primarily 
designed to support high-level programming languages, handle large databases, and 
process graphics-intensive applications. Their primary use is in personal computers (PCs) 
and network servers, where advanced computing power is essential. As a result, for 
fundamental microprocessor education, a simpler, more structured processor such as the 
8-bit microprocessor is a far better choice. 

2. The Microprocessor as a Programmable Device 

A microprocessor is a programmable device, meaning it can be instructed to perform 
speciϐic tasks within its operational limits. Much like a piano, which produces different 
tones depending on the keys pressed, a microprocessor processes and executes binary 
instructions according to a predeϐined set of rules. A musician selects keys based on a 
musical score, while a programmer selects and sequences instructions to control the 
microprocessor. The microprocessor is a versatile computing unit, capable of executing 
both complex computational functions and simple control tasks, such as turning devices on 
or off. By programming appropriate instructions, users can direct the microprocessor to 
process data and perform designated operations efϐiciently. 

The tasks a microprocessor can execute are determined by its architecture and instruction 
set, which are deϐined by hardware engineers during the design phase. Engineers develop 
the logic circuits necessary for executing speciϐic operations and establish a predeϐined 
instruction set that the processor understands. For example, a basic instruction for adding 
two numbers may be represented as an 8-bit binary code, such as 1000 0000. These 
instructions, composed of 0s and 1s, form the fundamental commands that a programmer 
selects and sequences to execute a given task. The execution order of these instructions is 
stored in memory, allowing the microprocessor to retrieve, interpret, and process them as 
needed. 

In a computing system, software consists of a set of instructions or commands that enable 
a programmable device to perform a speciϐic task. Hardware, on the other hand, refers to 
the physical components of a system that execute and support software operations. While 
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hardware provides the foundation for computational processes, it remains inactive 
without software. Software acts as the bridge between the user and the machine, ensuring 
that hardware resources are utilized effectively. A computing system requires integration 
of both software and hardware to function efϐiciently. 

i The microprocessor as a CPU (MPU) 

The microprocessor serves as the core component of a computer system. Traditionally, 
computers are represented by a block diagram comprising four fundamental components: 
memory, input, output, and the central processing unit (CPU). The CPU includes key 
functional elements such as the arithmetic and logic unit (ALU), control unit, registers, 
instruction decoders, counters, and control lines. The CPU retrieves instructions from 
memory, processes them, and executes tasks accordingly. It interacts with input/output 
devices (peripherals) to either receive or transmit data. While the CPU is responsible for 
managing communication between different components, the control unit coordinates the 
timing and execution of these operations. 

  

(a) 

 
(b)                                   (c) 

Figure 1. Block Diagram of Microcomputer. 

During the late 1960s, CPUs were built using discrete components mounted on multiple 
circuit boards. The advent of integrated circuit (IC) technology revolutionized CPU design, 
allowing it to be integrated into a single chip, leading to the development of the 
microprocessor. This advancement replaced the traditional multi-board CPU architecture 
with a compact microprocessor-based system. A computer system utilizing a 
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microprocessor as its CPU is called a microcomputer. The terms microprocessor and 
microprocessor unit (MPU) are often used interchangeably. The MPU functions as a 
complete processing unit with built-in control signals. However, due to the limited number 
of pins on a microprocessor chip, some control and multiplexed signals must be generated 
using additional external circuits to create a fully functional MPU. 

ii Evolution of Microprocessors 

Microprocessors have undergone remarkable advancements since their inception. The 
ϐirst commercially available microprocessor, the Intel 4004, was introduced in 1971. It was 
a 4-bit processor primarily designed for calculators and other fundamental computing 
applications. This was soon followed by the Intel 8008, an 8-bit microprocessor, which 
expanded the scope of microprocessor applications beyond simple arithmetic processing. 
The introduction of the Intel 8080 and its enhanced version, the Intel 8085, represented a 
signiϐicant milestone in microprocessor development. These processors signiϐicantly 
improved computing capabilities, enabling microprocessors to be widely adopted in 
various computer systems. As technology progressed, the industry moved towards 16-bit, 
32-bit, and 64-bit microprocessors, each offering greater processing power, enhanced 
memory addressing, and more efϐicient instruction execution. 

iii Technological Advancements in Microprocessors 

Continuous improvements in microprocessor technology have resulted in higher clock 
speeds, lower power consumption, and greater functional integration. Modern 
microprocessors incorporate ϐloating-point arithmetic units, cache memory, and multiple 
processing cores, allowing more efϐicient and high-speed computation. The introduction of 
parallel processing, artiϐicial intelligence acceleration, and advanced power management 
has further expanded the capabilities of microprocessors. Today, they play a crucial role in 
diverse ϐields, from personal computing and industrial automation to embedded systems 
and artiϐicial intelligence applications. The evolution of microprocessors continues, driving 
innovation in computing and digital systems worldwide. 

Table 1 Intel Microprocessors Historical Perspective 

Processor 
Year of 

Introduction 
Number of 

Transistors 

Initial 
Clock 
Speed 

Address 
Bus 

Data 
Bus 

Addressable 
Memory 

4004 1971 2,300 
108 
kHz 10-bit 4-bit 640 bytes 

8008 1972 3,500 
200 
kHz 14-bit 8-bit 16 K 

8080 1974 6,000 2 MHz 16-bit 8-bit 64 K 

8085 1976 6,500 5 MHz 16-bit 8-bit 64 K 

8086 1978 29,000 5 MHz 20-bit 16-bit 1 M 

8088 1979 29,000 5 MHz 20-bit 8-bit 1 M 

80286 1982 134,000 8 MHz 24-bit 16-bit 16 M 
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80386 1985 275,000 
16 

MHz 32-bit 32-bit 4 G 

80486 1989 1.2 M 
25 

MHz 32-bit 32-bit 4 G 

Pentium 1993 3.1 M 60 
MHz 32-bit 32/64-

bit 4 G 

Pentium 
Pro 

1995 5.5 M 
150 
MHz 

36-bit 
32/64-

bit 
64 G 

Pentium II 1997 8.8 M 
233 
MHz 

36-bit 64-bit 64 G 

Pentium III 1999 9.5 M 
650 
MHz 36-bit 64-bit 64 G 

Pentium 4 2000 42 M 
1.4 
GHz 

36-bit 64-bit 64 G 

3. Organization of a Microprocessor-Based System 

A microprocessor-based system consists of essential components that work together to 
execute computing and control tasks efϐiciently. Figure 2 illustrates a simpliϐied yet formal 
structure of such a system. Since a microcomputer is a type of microprocessor-based 
system, it follows the same fundamental architecture. The core components of this system 
include the microprocessor, input/output (I/O) devices, and memory (both read/write 
memory and read-only memory). These elements are interconnected through a shared 
communication channel known as the system bus, which facilitates the transfer of data, 
addresses, and control signals. The entire system, comprising these interconnected 
components, is referred to as a microcomputer system, with each individual component 
serving as a subsystem within it. 

It is important to distinguish between the terms microprocessor and microcomputer, as 
they are often used interchangeably in popular literature. The microprocessor is a single 
component within a system, functioning as the central processing unit (CPU). It performs 
computations, logic operations, and control functions necessary for system execution. In 
contrast, a microcomputer is a complete computing system, integrating the 
microprocessor along with memory, input/output interfaces, and supporting circuits to 
form a fully operational computing unit. 

Additionally, the term peripheral refers to input/output (I/O) devices connected to the 
microcomputer. These devices, such as keyboards, displays, storage units, and sensors, 
enable interaction between the user and the computing system. The organization of these 
components in a microprocessor-based system or microcomputer is depicted in Figure 2, 
providing a structural representation of how they interact to execute programmed 
instructions. Each component within this structure plays a crucial role in ensuring efϐicient 
data processing, system control, and external communication, making microprocessor-
based systems essential in modern computing and automation applications. 

 



10 | P a g e  

 

Figure 2 Microprocessor-Based System with Bus Architecture. 

i Microprocessor Internal blocks 

A microprocessor is a clock-driven semiconductor device composed of electronic logic 
circuits fabricated using Large-Scale Integration (LSI) or Very-Large-Scale Integration 
(VLSI) technology. It serves as the processing core of a system, performing various 
computing operations and executing instructions to make decisions that alter the sequence 
of program execution. In large computing systems, the CPU consists of multiple 
components spread across one or more circuit boards. However, in a microprocessor, all 
essential logic circuits, including the Control Unit (CU), Arithmetic Logic Unit (ALU), and 
Register Array, are integrated onto a single chip, making it a compact and efϐicient 
computing device. For better understanding, the internal architecture of a microprocessor 
can be divided into three main functional units, as depicted in Figure 2. 

Arithmetic and Logic Unit (ALU): The Arithmetic and Logic Unit (ALU) is the 
computational core of the microprocessor. It executes arithmetic operations such as 
addition, subtraction, increment, and decrement and performs logical operations including 
AND, OR, XOR, and bitwise shifts. The ALU interacts with registers and memory to process 
data, and the results of operations affect speciϐic status ϐlags in the ϐlag register, indicating 
conditions such as zero, carry, parity, and sign. 

Register Array: The register array consists of multiple temporary storage locations, 
known as registers, that facilitate fast data access and manipulation. These registers are 
classiϐied into general-purpose registers and special-purpose registers: 

General-Purpose Registers (B, C, D, E, H, and L) – Used for storing intermediate results and 
operands during instruction execution. 

Accumulator (A Register) – A dedicated register where most arithmetic and logical 
operations take place. 

Flag Register – Holds status ϐlags to indicate the outcome of ALU operations. 

Program Counter (PC) – Keeps track of the next instruction to be executed. 

Stack Pointer (SP) – Points to the top of the stack, used for temporary data storage and 
function calls. 

Control Unit (CU): The Control Unit (CU) acts as the brain of the microprocessor, 
generating timing and control signals to coordinate all system operations. It ensures 
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proper data ϐlow between the ALU, register array, memory, and peripheral devices. The 
control unit manages instruction decoding, execution sequencing, and communication with 
external components through control signals such as Read (RDጟ ), Write (WRጟ ), and Address 
Latch Enable (ALE). 

ii Memory 

Memory is an essential component of a microprocessor-based system, responsible for 
storing binary information, including instructions and data, and supplying it to the 
microprocessor when needed. The microprocessor retrieves instructions and data from 
memory to execute programs and performs the necessary computing operations in its 
Arithmetic and Logic Unit (ALU). The results of these operations are either sent to the 
output devices for display or stored back in memory for future use. As shown in Figure 3, 
the memory block is typically divided into two main sections: 

1. Read-Only Memory (ROM): Read-Only Memory (ROM) is used for storing programs that 
do not require modiϐications. Programs stored in ROM are permanent and can only be read, 
not altered. A common example is the monitor program in a single-board microcomputer, 
which interprets user inputs from a keyboard and converts them into binary instructions 
for the microprocessor. Since ROM retains its contents even when power is turned off, it is 
classiϐied as non-volatile memory. 

2. Random-Access Memory (RAM): Read/Write Memory (R/WM), commonly referred to 
as Random-Access Memory (RAM), is used for storing user programs and data during 
execution. Unlike ROM, the contents of RAM can be read and modiϐied. This memory is 
often called user memory because it temporarily holds instructions and data entered by 
the user. In single-board microcomputers, a monitor program tracks inputs from a 
hexadecimal keypad and stores the corresponding instructions and data in RAM. Since 
RAM is volatile memory, its contents are lost when the power supply is turned off. 

iii Input/Output devices 

The Input/Output (I/O) subsystem is the third essential component of a microprocessor-
based system, responsible for enabling communication between the microprocessor and 
the external world. I/O devices, also known as peripherals, serve as an interface between 
the user and the system, allowing data and instructions to be transferred to and from the 
microprocessor. 

Input Devices: Input devices allow the transfer of binary information, such as data and 
instructions, from external sources into the microprocessor. Common input devices 
include: 

Keyboards – Used to enter data and commands. 

Switches – Simple input mechanisms that provide binary signals to the microprocessor. 

Analog-to-Digital (A/D) Converters – Convert analog signals (e.g., temperature, pressure) 
into digital form for processing. 
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In laboratory microcomputers, input is typically provided through a hexadecimal (Hex) 
keyboard or an ASCII keyboard: 

Hexadecimal Keyboard – A 16-key keypad (digits 0-9 and A-F) with additional function 
keys for storing data and executing programs. 

ASCII Keyboard – Similar to a typewriter keyboard, used for entering programs in an 
English-like language. While ASCII keyboards are common in personal computers (PCs), 
single-board microcomputers often use Hex keyboards. Microprocessor-based consumer 
products, such as microwave ovens, frequently feature decimal keypads for user input. 

Output Devices: Output devices transfer processed data from the microprocessor to the 
external world. These devices include: 

Light-Emitting Diodes (LEDs) – Used for basic binary indication and status displays. 

Seven-Segment Displays – Display numerical values and simple characters. 

Cathode-Ray Tube (CRT) or Video Screen – Found in traditional computing systems for 
visual output. 

Printers – Used to produce hard copies of processed data. 

Digital-to-Analog (D/A) Converters – Convert digital signals from the microprocessor into 
analog signals for real-world applications. 

 

iv System Bus 

The system bus is a communication path between the microprocessor and peripherals; it 
is nothing but a group of wires that carry bits. Several buses in the system will be discussed 
in the next chapter. All peripherals (and memory) share the same bus; however, the 
microprocessor communicates with only one peripheral at a time. The control unit of the 
microprocessor provides timing. 

4. Microcomputer Organization:  

A microprocessor combined with memory and input/output devices forms a 
microcomputer. These components are shown in the ϐigure below:  

 

Figure 3 Basic Components of Microcomputer 

  

CPU 

   Data  
memory 

 Program 
 memory 

   Clock 
generator 

Output 
ports 

Input 
ports 
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Central Processing Unit (CPU) and Program Execution in a Microprocessor-Based System 

The Central Processing Unit (CPU) is the core of a microprocessor-based system and is 
responsible for executing instructions and processing data. It consists of three major 
components: Arithmetic and Logic Unit (ALU): Performs arithmetic operations such as 
addition, subtraction, multiplication, and division, as well as logical operations like AND, 
OR, XOR, and NOT. Register Unit: Contains various temporary storage locations (registers) 
used for storing data, intermediate results, and special-purpose information such as the 
program counter (PC), stack pointer (SP), and ϐlag registers. 

Control Unit (CU): Generates necessary timing and control signals to coordinate operations 
between the CPU, memory, and peripheral devices. The CPU fetches instructions from 
program memory (ROM or RAM), retrieves data from data memory or an input device, 
processes the data using the ALU, and then stores the result in memory or sends it to an 
output device. 

System Boot-Up and Reset Mechanism: When power is turned on, the monitor program 
stored in EPROM or ROM initializes the system. The Reset key is used to clear the program 
counter (PC), which then holds the memory address 0000H. Some systems feature 
automatic power-on reset, which ensures the system starts from a predeϐined state every 
time it is powered on. Upon resetting, the program counter (PC) places address 0000H on 
the address bus, and the instruction stored at that location is fetched and executed. This 
marks the beginning of the Key Monitor program, which is usually stored on page 00H of 
memory. 

Low-Level Languages 

Low-level languages are programming languages that are closer to machine language and 

provide direct hardware control. 

Machine Language: Uses binary code (0s and 1s) directly understood by the microprocessor. 

Difficult to write, read, and debug. Example: 10110000 01100001 (Binary representation of 

MOV A, 61H in 8085). 

Assembly Language: Uses mnemonics instead of binary code. It is easier to understand than 

machine language but still hardware dependent. Requires an assembler for conversion to 

machine code. 

High-Level Languages 

High-level languages (HLLs) are programming languages that use English-like syntax and 

abstraction, making them easier for humans to understand. They are hardware-independent 

and require a compiler or interpreter to convert them into machine code. Examples: C, 

Python, Java, FORTRAN 

Advantages: Easy to learn and use. Portable across different hardware architectures. Requires 

less knowledge of hardware details.  

int a = 5, b = 10; 
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int sum = a + b; 

This code is much easier to understand than low-level assembly instructions. 

Table 2 Comparison of languages 

Feature 
Machine 
Language 

Assembly 
Language 

High-Level Language 

Readability Difficult (binary) 
Moderate 
(mnemonics) 

Easy (English-like) 

Execution Speed Fastest Faster 
Slower (due to 
compilation) 

Hardware 
Dependence 

Highly dependent Dependent Independent 

Ease of Debugging Difficult Moderate Easy 

Steps in writing and executing an assembly language program 

Step 1: Writing Instructions in Mnemonics 

The assembly language program is written using mnemonics obtained from the instruction 

set of the microprocessor. Mnemonics are human-readable representations of machine 

instructions. 

Step 2: Finding Hexadecimal Machine Code 

Each mnemonic corresponds to a hexadecimal opcode in the microprocessor's instruction 

set. The assembler or manual lookup can be used to convert mnemonics into machine code. 

Step 3: Entering the Program into Memory 

The program is loaded into the user memory sequentially. A Hexadecimal Keyboard (or a 

system loader) is used to input the machine code into the microprocessor's memory. 

Step 4: Executing the Program 

The program is executed by pressing the Execute key or using a command in an 

emulator/software tool. The microprocessor fetches, decodes, and executes each instruction. 

The result is stored in a register or displayed on LEDs/LCD (if interfaced with the 

microprocessor system). 

i ALU (Arithmetic and Logic Unit)  

This unit performs computing functions on m-bit data where ‘m’ is the bit size of the 
processor. These functions are arithmetic operations such as addition, subtraction and 
logical operation such as AND, OR, XOR, rotate, compare etc. Results are stored either in 
registers or in memory or sent to output devices.   
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ii Register Unit:   

It contains various 8-bit or 16-bit registers. These registers are used primarily to store data 
temporarily during the execution of a program. Some of the registers are accessible to the 
user through instructions. It means their contents can be read and/or changed through 
instructions. Some of the registers are not accessible to user but they are used by the 
processor for the execution of an instruction. 8085A microprocessor contains 8-bit 
registers such as Accumulator (Reg. A), B, C, D, E, H, L etc. and 16-bit registers such as 
Program Counter (PC), Stack Pointer (SP).  

The Program Counter (PC) is a 16-bit register that holds the address of the next instruction 
to be executed. The PC fetches the address of the instruction from memory. After fetching, 
it automatically increments to point to the next instruction. In the case of jump or call 
instructions, the PC is modiϐied to point to a new address. Controls the sequence of 
execution in a program. 

The Stack Pointer (SP) is a 16-bit register that holds the address of the top of the stack in 
memory. The stack is used for temporary storage of data, return addresses, and registers. 
The SP is decremented (decreases) when data is pushed (stored) onto the stack. The SP is 
incremented (increases) when data is popped (retrieved) from the stack. It works in LIFO 
(Last In, First Out) order. The SP decreases by 2 during PUSH instruction and increases by 
2 during POP instruction. 

iii Timing and Control Unit:  

It provides necessary timing & control signals required for the operation of 
microcomputer. It controls the ϐlow of data between the microprocessor and peripherals 
(input, output & memory). The control unit gets a clock signal which determines the speed 
of the microprocessor.  In all, the CPU has the following basic functions:   

5. Memory 

Memory plays a crucial role in a microprocessor-based system, as it stores both program 
instructions and data needed for execution. It consists of two main types: Read-Only 
Memory (ROM) and Read/Write Memory (RWM), both of which are considered Random 
Access Memory (RAM) since data can be accessed from any location directly. 

1. Read-Only Memory (ROM): ROM (Read-Only Memory) is a non-volatile memory, 
meaning its contents remain intact even when the power is turned off. Since ROM is read-
only, data stored in it cannot be modiϐied after manufacturing (except in the case of 
programmable ROMs like EPROM or EEPROM). ROM is typically used for storing ϐixed 
programs that do not change during system operation. One common use of ROM is in 
microcomputers, where it stores the monitor program—a set of instructions that initializes 
the system and handles user interactions. This ensures that the processor starts executing 
from a predetermined location when the system powers up or is reset. 

2. Read/Write Memory: RWM (Read/Write Memory), often referred to as RAM (Random 
Access Memory), is a volatile memory that loses its contents when power is turned off. 
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Unlike ROM, RWM allows both reading and writing of data, making it essential for storing 
user programs, temporary data, and intermediate results during program execution. 

During a memory read operation, the microprocessor retrieves data from a speciϐic 
location without altering its contents. During a memory write operation, new data is stored 
in a speciϐied location, overwriting the previous contents. 

i Program Memory:  

The program memory is responsible for storing the sequence of instructions that the CPU 
executes. When a microcomputer system starts up, either on power-up or after a reset, the 
processor fetches and executes instructions from a predetermined location in program 
memory. Since the program remains ϐixed and does not change during execution, it is 
typically stored in ROM. The ϐirst instruction of the program must be placed at the 
processor's predeϐined reset address to ensure proper execution. 

ii Data Memory:  

Data memory is used for storing variables, intermediate results, and temporary data 
needed for program execution. It enables the microprocessor to manipulate data according 
to the algorithm provided in the program instructions. Internal Registers: Microprocessors 
have small internal memory in the form of registers, which store frequently used data and 
improve processing speed. External Data Memory: If the storage requirement exceeds the 
capacity of internal registers, the system uses external RAM for additional data storage. 

6. Microcomputer Bus System 

A microcomputer consists of three essential buses that facilitate the transfer of address, 
data, and control signals required for program execution. These buses serve as 
communication pathways that connect the microprocessor, memory, and input/output 
(I/O) devices, enabling seamless data exchange and coordinated operations. The efϐiciency 
of a microcomputer heavily depends on the organization and performance of these buses, 
as they determine how quickly and effectively instructions and data are transmitted 
between system components. 

i Address Bus 

In a microcomputer system, the central processing unit (CPU) is the core component 
responsible for controlling system operations. When executing a program, the CPU 
determines which device (memory or an I/O peripheral) should participate in a data 
transfer. This selection is accomplished by placing the speciϐic address of the target device 
onto the address bus. The address bus is unidirectional, meaning that the ϐlow of address 
information occurs only from the microprocessor to memory or I/O devices. The CPU 
transmits an address to identify a speciϐic memory location or an I/O device before 
initiating a data transfer. In the case of memory access, the address bus not only identiϐies 
the memory device but also speciϐies the exact memory location within it. 

The size of the address bus determines the number of addressable memory locations. For 
instance, an 8-bit address bus can address 256 (2⁸) memory locations, whereas a 16-bit 
address bus, as seen in the 8085 microprocessor, can address 64 KB (2¹⁶) of memory space. 
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As microprocessors evolve, they incorporate wider address buses, enabling access to larger 
memory capacities and more complex I/O devices. In modern computing systems, memory 
management techniques, such as paging and segmentation, allow efϐicient utilization of the 
address bus, enabling microprocessors to address vast amounts of memory beyond their 
physical addressing limit. Additionally, the introduction of multiplexed address buses in 
some microprocessors optimizes pin usage, further enhancing the design of compact and 
efϐicient computing devices. 

ii Data Bus in Microcomputer Systems 

The data bus is a set of lines used to transfer data between the microprocessor, memory, 
and peripheral devices. In the 8085A microprocessor, the data bus consists of 8 lines (D7-
D0), which allow the processor to handle 8-bit data transfers at a time. The data bus is a 
shared resource, meaning that multiple devices can connect to it. However, to avoid 
conϐlicts, only one device should transmit data at any given time, while all other devices 
must remain in a high-impedance (high-Z) state to prevent electrical interference.  

Unlike the address bus, which is unidirectional, the data bus is bidirectional, meaning data 
can ϐlow both to and from the microprocessor. This bidirectional nature allows the 
processor to read data from memory or I/O devices and write data back when required. 
Therefore, this is called bidirectional data bus (BDB). In some microprocessors, the data 
pins are also used to send other information such as address bits in addition to data. This 
means that the data pins are time shared or multiplexed. In Intel 8085A microprocessor 
lower 8-bits of the address (A7-A0) are time-multiplexed with the 8-bit data (D7-D0) and, 
therefore, this bus is called AD bus (AD7-AD0). 

In some microprocessors, data pins serve multiple purposes, such as transmitting both 
address and data signals. This technique is known as multiplexing and helps optimize the 
number of available pins on the microprocessor. For example, in the Intel 8085A 
microprocessor, the lower 8 bits of the address bus (A7-A0) are multiplexed with the 8-bit 
data bus (D7-D0), forming the AD bus (AD7-AD0). During the ϐirst phase of an operation, 
these lines carry the address, and in the second phase, they are used for data transfer. To 
separate address and data signals, external latching circuits are employed, such as the 
74LS373 latch. 

iii Control Bus 

The control bus consists of a set of dedicated control signals that coordinate operations 
between the microprocessor, memory, and I/O devices. These signals synchronize data 
transfers, ensuring that all system components operate in a coordinated manner. Every 
operation performed by the microprocessor, such as reading from memory, writing to 
memory, or communicating with I/O devices, is controlled through signals transmitted via 
the control bus. Some of the signals of the control bus are issued by the processor and some 
of the signals are received by the processor. Therefore, the control bus is called 
bidirectional control bus (BCB). The difference between BDB and BCB is that in BDB all 
data lines are either in input mode or in output mode whereas in BCB the direction of signal 
ϐlow on a line is ϐixed.   
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Common control signals in the 8085 microprocessor include: 

RDጟ  (Read signal): Indicates that the microprocessor is reading data from memory or an I/O 
device. 

WRጟ  (Write signal): Indicates that the microprocessor is writing data to memory or an I/O 
device. 

IO/Mጟ  (Memory or I/O selection): Differentiates between memory (IO/Mጟ  = 0) and I/O 
operations (IO/Mጟ  = 1). 

The control bus is bidirectional, meaning that some signals are generated by the processor, 
while others are received from external devices. Unlike the bidirectional data bus, where 
all lines function as either inputs or outputs at a given time, the control bus features ϐixed-
direction signals, ensuring consistent communication between system components. As 
microprocessor technology has advanced, additional control signals have been introduced 
to manage interrupt handling, direct memory access (DMA), and power-saving features, 
enhancing the efϐiciency of modern computing systems. 
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Chapter 2. 8085 Architecture and Pin Diagram 

The 8085 microprocessor, developed by Intel in 1976, is an 8-bit microprocessor designed 
for general-purpose computing and embedded applications. It follows the Von Neumann 
architecture, meaning that both data and instructions share the same memory space. The 
processor operates on a +5V power supply and runs at a clock speed of 3 MHz with a 16-
bit address bus, it can access 64 KB of memory, while its 8-bit data bus allows processing 
of 8-bit data at a time. 

The 8085 architecture is divided into several functional units, including the Arithmetic and 
Logic Unit (ALU), Register Array, Control Unit, Address and Data Bus, and Interrupt System. 
These components work together to execute instructions efϐiciently. 

1. Internal Architecture of 8085 

The internal structure of the 8085 microprocessor consists of the following key units: 

i Arithmetic and Logic Unit (ALU) 

The Arithmetic and Logic Unit (ALU) is responsible for performing arithmetic operations 
such as addition, subtraction, and logical operations such as AND, OR, and XOR. The ALU 
interacts with the accumulator and other registers to execute these operations efϐiciently. 
It also affects the status ϐlags stored in the ϐlag register. 

ii Register Array 

The 8085 microprocessor contains a set of registers that store data temporarily during 
execution. These include six general-purpose registers (B, C, D, E, H, and L), an accumulator 
(A), a program counter (PC), and a stack pointer (SP). The registers can be used individually 
or in pairs (BC, DE, HL) for 16-bit operations. The accumulator is an essential register used 
for arithmetic and logical operations. 

Different Types of Registers in 8085 

The 8085 microprocessor has several registers used for data storage, processing, and control 
operations. These registers can be classified based on their size, function, and accessibility. 

1. Classification Based on Size 

8-bit Registers: Accumulator (A), General-purpose registers (B, C, D, E, H, L), Flag register 

16-bit Registers: Program Counter (PC), Stack Pointer (SP) 

2. Classification Based on Functionality 

General-Purpose Registers 

Registers B, C, D, E, H, and L are used for temporary data storage and arithmetic operations. 

They can be used as register pairs (BC, DE, HL) for 16-bit operations. 

Special-Purpose Registers 

Accumulator (A): An 8-bit register used for arithmetic and logic operations. It stores the final 
result of computations. 

Flag Register: Stores the status of operations with five flags – Sign (S), Zero (Z), Auxiliary 
Carry (AC), Parity (P), and Carry (CY). 
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Control and Addressing Registers 

Program Counter (PC): A 16-bit register that holds the memory address of the next 
instruction to be executed. It is automatically incremented after each instruction fetch. 

Stack Pointer (SP): A 16-bit register that keeps track of the top of the stack during subroutine 
calls and interrupts. 

3. Classification Based on User Accessibility 

User-Accessible Registers: Accumulator (A), General-purpose registers (B, C, D, E, H, L) 

System-Controlled Registers: Program Counter (PC), Stack Pointer (SP), Flag Register 

iii Control Unit 

The control unit is responsible for generating control signals to manage data ϐlow between 
the microprocessor, memory, and peripherals. It interprets instructions fetched from 
memory and coordinates the operations of the ALU and registers. Control signals include 
RDጟ  (Read), WRጟ  (Write), IO/Mጟ  (Memory or I/O selection), and ALE (Address Latch Enable). 

2. Pin Diagram and Functions of Various Pins 

 

Figure 4 Pin diagram and functional block diagram. 
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The 8085 microprocessor has a 40-pin dual in-line package (DIP) conϐiguration. The pins 
are categorized into different groups based on their functions, such as power supply, clock 
signals, control signals, data and address buses, and serial I/O. 

i Power Supply and Clock Signals 

• VCC (Pin 40): +5V power supply. 
• GND (Pin 20): Ground. 
• X1, X2 (Pins 1, 2): Crystal oscillator connections for clock generation. 
• CLK OUT (Pin 37): Provides clock signals to external peripherals. 

8085 has a clock generation circuit on the chip but an external quartz crystal or L C circuit 
or RC circuit should be connected at pins X1 and X2. The maximum internal clock 
frequency of 8085 is 3.07 MHz  

ii Address and Data Buses 

• Address Bus (A15–A8): The higher-order address lines (A15–A8) are used for memory 
addressing. 
• Multiplexed Address/Data Bus (AD7–AD0): The lower-order address and data lines are 
multiplexed to save pins. During the address phase, these lines carry address bits, and during the 
data phase, they carry data. 

iii Control and Status Signals 

• RDጟ  (Pin 32): Read signal, active low, used to read data from memory or I/O. 
• WRጟ  (Pin 31): Write signal, active low, used to write data to memory or I/O. 
• IO/Mጟ  (Pin 34): Distinguishes between memory (0) and I/O (1) operations. 
• ALE (Pin 30): Address Latch Enable, used to demultiplex address/data lines. 
• READY (Pin 35): Indicates whether the peripheral is ready for data transfer. 

Pins in the Timing and Control Unit of the 8085 Microprocessor 

The 8085 microprocessor has several pins associated with the timing and control unit that 
manage data ϐlow, memory access, and I/O operations. These pins are crucial for 
coordinating the execution of instructions. 

Table 3 Key Pins and Their Functionality 

Pin Type Function 

CLK (Clock Out) Output Provides system clock to synchronize external devices. 

RDതതതത (Read Control Signal) Output Indicates that data is being read from memory or I/O device. 

WRതതതതത (Write Control Signal) Output Indicates that data is being written to memory or an I/O device. 

ALE (Address Latch Enable) Output 
Used to separate the lower byte of address from the multiplexed 
address/data bus (AD0-AD7). 

IO/Mഥ  (Input/Output or 
Memory Select) 

Output Distinguishes between memory (0) and I/O (1) operations. 
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Pin Type Function 

S0 and S1 (Status Signals) Output 
Indicate the operation type (Fetch, Memory Read, Memory Write, 
I/O Read, I/O Write, or Halt). 

READY Input 
Ensures synchronization with slow memory or I/O devices by 
pausing the microprocessor until the device is ready. 

RESET INതതതതതതതതതതതത Input 
When activated, resets the microprocessor and restarts execution 
from address 0000H. 

RESET OUT Output Used to reset external devices upon system reset. 

The timing and control unit in the 8085 microprocessor plays a critical role in data ϐlow, 
memory access, and I/O operations. These control signals help in synchronizing the 
processor with external memory, I/O devices, and other components. 

iv Interrupts and Serial I/O 

• TRAP, RST7.5, RST6.5, RST5.5, INTR: Hardware interrupts. 
• Serial Input/Output: SID (Serial Input Data) and SOD (Serial Output Data) for serial 
communication. 

Interrupt Signals in 8085 Microprocessor 

The 8085 microprocessor has ϐive interrupt signals that allow external devices to interrupt 
the normal execution of a program. These interrupts help in handling urgent tasks, external 
events, and I/O operations. 

Table 4 List of Interrupt Signals in 8085 

Interrupt Type Priority Vector Address Maskable Triggering Method 

TRAP 
Non-
maskable 

Highest 0024H No 
Edge and Level 
Triggered 

RST 7.5 Maskable Second 003CH Yes Edge Triggered 

RST 6.5 Maskable Third 0034H Yes Level Triggered 

RST 5.5 Maskable Fourth 002CH Yes Level Triggered 

INTR Maskable Lowest 

Any memory 
location (needs 
external 
hardware) 

Yes Level Triggered 

Interrupt Priority Order: TRAP > RST 7.5 > RST 6.5 > RST 5.5 > INTR 

The Software interrupts are program instructions. These instructions are inserted at 
desired locations in a program. While running a program, if software interrupt instruction 
is encountered then the processor executes an interrupt service routine. If an interrupt is 
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initiated in a processor by an appropriate signal at the interrupt pin, then the interrupt is 
called Hardware interrupt. The Software interrupt is initiated by the main program, but 
the Hardware interrupt is initiated by an external device. In 8085, the Software interrupt 
cannot be disabled or masked but the Hardware interrupt except TRAP can be disabled or 
masked.  When an interrupt is accepted, if the processor control branches to a speciϐic 
address deϐined by the manufacturer, then the interrupt is called vectored interrupt. In 
non-vectored interrupt there is no speciϐic address for storing the interrupt service 
routine. Hence the interrupted device should give the address of the interrupt service 
routine. 

Masking is preventing the interrupt from disturbing the current program execution. When 
the processor is performing an important job (process) and if the process should not be 
interrupted then all the interrupts should be masked or disabled. In processor with 
multiple interrupts, the lower priority interrupt can be masked to prevent it from 
interrupting, the execution of interrupt service routine of higher priority interrupt. The 
processor keeps on checking the interrupt pins at the second T -state of the last Machine 
cycle of every instruction. If the processor ϐinds a valid interrupt signal and if the interrupt 
is unmasked and enabled, then the processor accepts the interrupt. The acceptance of the 
interrupt is acknowledged by sending an OOA signal to the interrupted device. The 
interrupts of 8085 except TRAP are disabled after anyone of the following operations— 

1. Executing Dl instruction. 

2. System or processor reset. 

3. After reorganization (acceptance) of an interrupt. 

For the interrupt INTR, the interrupting device has to place either an RST opcode or CALL 
opcode followed by l6-bit address. Instruction RST opcode is placed then the 
corresponding vector address is generated by the processor. In the case of CALL Opcode 
the given l6-bit address will be the vector address.  

v Generating Control Signals 

Figure below shows the RDതതതത (Read) as a control signal. Because this signal is used both for 
reading memory and for reading an input device, it is necessary to generate two different 
Read signals: one for memory and another for input. Similarly, two separate Write signals 
must be generated. 

The ϐigure below shows that four different control signals are generated by combining the 
signals 𝑅𝐷തതതത, 𝑊𝑅തതതതത, and IO/M‾ . The signal IO/M‾  goes low for the memory operation. When both 
input signals go low, the outputs of the gates go low and generate MEMR (Memory Read) 
and MEMW (Memory Write) control signals. When the 𝐼𝑂/𝑀‾  signal goes high, it indicates 
the peripheral I/O operation.  
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Figure 5: Generation of control signal for interfacing. 

3. System Bus (Address Bus, Data Bus, and Control Bus) 

The 8085 microprocessor communicates with memory and peripheral devices using the 
system bus, which consists of three main components: the Address Bus, Data Bus, and 
Control Bus. 

i Address Bus 

The address bus is used to specify the memory location or I/O device to be accessed. It is 
16-bit wide, allowing the microprocessor to address up to 64 KB of memory (2¹⁶ locations). 
The address bus is unidirectional, meaning data ϐlows only from the microprocessor to 
memory. 

ii Data Bus 

The data bus is used to transfer data between the microprocessor, memory, and I/O 
devices. It is 8-bit wide, meaning the microprocessor can process 8-bit data at a time. The 
data bus is bidirectional, allowing data to ϐlow in both directions. 

iii Control Bus 

The control bus consists of signals used to control data transfer. These signals include RDጟ  
(Read), WRጟ  (Write), IO/Mጟ  (Memory/I/O selection), and ALE (Address Latch Enable). The 
control bus ensures proper synchronization between the microprocessor and external 
devices. 

Additionally, many peripheral device operations require direct hardware interaction, 
which is often not supported by high-level languages. For example, operations involving 
serial communication, direct memory access (DMA), and device-speciϐic control registers 
are typically implemented using assembly language. As a result, even in modern 
computing, assembly language remains an essential tool for system programming, 
embedded applications, and performance-critical tasks. 
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4. Data formats in computer 

Data in digital systems is represented in different formats based on the application and 

processing requirements. The commonly used data formats are ASCII code, Extended ASCII, 

BCD code, Signed Integer, and Unsigned Integer. 

1. ASCII Code (American Standard Code for Information Interchange) 

ASCII (7-bit) is a standard character encoding format used to represent text on computers. 

It uses 7 bits to represent 128 characters (0-127), including letters, digits, punctuation, and 

control characters. 

‘A’ = 65 (Decimal) = 1000001 (Binary) 

‘a’ = 97 (Decimal) = 1100001 (Binary) 

‘1’ = 49 (Decimal) = 0110001 (Binary) 

2. Extended ASCII Code (8-bit ASCII) 

Extended ASCII (8-bit) extends the standard ASCII set to 256 characters (0-255). It includes 

special characters, graphical symbols, and accented letters. 

'Ç' = 128 (Extended ASCII) 

'é' = 130 (Extended ASCII) 

3. BCD (Binary-Coded Decimal) 

BCD represents decimal numbers (0-9) in 4-bit binary form. Each decimal digit is converted 

separately into 4-bit binary. 

Decimal 25 → BCD: 0010 0101 

Decimal 93 → BCD: 1001 0011 

4. Signed Integer Representation 

Signed integers represent both positive and negative numbers. The most common method is 

Two's Complement Representation, where:  

MSB (Most Significant Bit) is the sign bit (0 = Positive, 1 = Negative). 

Positive Numbers → Stored in normal binary. 

Negative Numbers → Stored in two’s complement form. 

+5 = 00000101, -5 = 11111011 (Two’s Complement of 00000101) 

Range for 8-bit Signed Integer: -128 to +127 

5. Unsigned Integer Representation 

Unsigned integers represent only positive numbers, using all available bits for magnitude. 

Range for 8-bit Unsigned Integer: 0 to 255 

Table 5 Different data format and their properties 

Data Format Bit Size Range/Usage Example 
(Binary 
Representation) 
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ASCII 7-bit 128 characters 'A' = 1000001, 'a' 
= 1100001 

Extended ASCII 8-bit 256 characters 'Ç' = 10000000 

BCD 4-bit per digit 0-9 per digit 25 → 0010 0101 

Signed Integer (8-
bit) 

8-bit -128 to +127 +5 = 00000101, -
5 = 11111011 

Unsigned Integer 
(8-bit) 

8-bit 0 to 255 5 = 00000101, 
255 = 11111111 

 

5. Hardware Components in a Microcomputer-Based System 

In addition to the 8085 microprocessor, a microcomputer-based system requires several 
supporting hardware components to ensure proper functionality and communication 
between system elements. These components include tri-state devices, buffers, latches, and 
decoders, which help in efϐicient data transfer and control. 

Tri-state devices are essential in systems where multiple components share a common 
data bus. They have three output states: high (1), low (0), and high-impedance (Z). The 
high-impedance state effectively disconnects the device from the bus, preventing conϐlicts 
when multiple components attempt to transmit data simultaneously. Buffers act as 
intermediate circuits that amplify or regulate signals, ensuring reliable data transmission 
between the microprocessor and peripherals. They help in isolating circuits, preventing 
excessive current draw from the processor, and reducing loading effects on the bus. 

Other essential components include latches, which temporarily hold data before it is 
transferred, and decoders, which help in memory and peripheral selection. These 
components collectively enhance the performance, stability, and efϐiciency of 
microcomputer-based systems by managing data ϐlow and ensuring smooth interaction 
between the microprocessor, memory, and I/O devices. 

i Tri-State Devices 

Tri-state logic devices have three states: logic 1, logic 0, and high impedance. The term Tri-
state is a trademark of National Semiconductor and is used to represent three logic states. 
A tri-state logic device has a third line called Enable, as shown in Figure 7. When this line 
is activated, the tri-state device functions the same way as ordinary logic devices. When the 
third line is disabled, the logic device goes into the high impedance state-as if it were 
disconnected from the system. Ordinarily, current is required to drive a device in logic 0 
and logic 1 states. In the high impedance state, practically no current is drawn from the 
system. Figure 7(a) shows a tri-state inverter. When the Enable is high, the circuit functions 
as an ordinary inverter; when the Enable line is low, the inverter stays in the high 
impedance state. Figure 7(b) also shows a tri-state inverter with active low Enable line-
notice the bubble. When the Enable line is high, the inverter stays in the high impedance 
state. 
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In microcomputer systems, peripherals are connected in parallel between the address bus 
and the data bus. However, because of the tri-state interfacing devices, peripherals do not 
load the system buses. The microprocessor communicates with one device at a time by 
enabling the tri-state line of the interfacing device. Tri-state logic is critical to proper 
functioning of the microcomputer. 

ii Buffer 

The buffer is a logic circuit that ampliϐies the current or power. It has one input line and 
one output line (a simple buffer is shown in Figure 8a). The logic level of the output is the 
same as that of the input; logic 1 input provides logic 1 output (the opposite of an inverter). 
The buffer is used primarily to increase the driving capability of a logic circuit. It is also 
known as a driver. 

 

Figure 6: Tri-State Inverters with Active High and Active Low Enable Lines 

Figure 7 shows a tri-state buffer. When the Enable line is low, the circuit functions as a 
buffer; otherwise it stays in the high impedance state. The buffer is commonly used to 
increase the driving capability of the data bus and the address bus. 

iii Examples of Tri-State Buffers and Bidirectional Buffers 

Tri-state buffers play a crucial role in microcomputer systems, particularly in bus-oriented 
architectures, where multiple devices share the same bus. These buffers allow controlled 
access to the data and address buses, ensuring that only one device drives the bus at a time, 
while others remain in a high-impedance state to avoid conϐlicts. One common example of 
a tri-state buffer is the 74LS244 octal buffer, also known as a line driver or line receiver. 
This device is frequently used as an address bus driver in systems that require multiple 
components to share the address bus. The 74LS244 contains two groups of four buffers, 
each controlled by an active-low enable line (1Gഥ and 2Gഥ). When these enable lines are low, 
the corresponding buffers are activated, allowing data to pass through. When the enable 
lines are high, the outputs enter a high-impedance state, effectively disconnecting from the 
bus. The 74LS244 is designed to sink up to 24 mA and source up to -15 mA, making it 
suitable for driving address lines over long distances with minimal signal degradation. 

iv Bidirectional Buffer: 74LS245 Octal Bus Transceiver 

Unlike the address bus, which is unidirectional, the data bus in a microcomputer system is 
bidirectional, requiring specialized buffers that allow data to ϐlow in both directions. The 
74LS245 octal bus transceiver is a widely used bidirectional buffer designed to manage 
data transmission between two buses, commonly labeled as A bus and B bus. 



28 | P a g e  

The 74LS245 contains 16 bus drivers, divided equally for two-way communication, with 
eight drivers dedicated to each direction. The data ϐlow direction is controlled by the DIR 
pin. When DIR is high, data ϐlows from the A bus to the B bus, whereas when DIR is low, 
data is transferred from the B bus to the A bus.  

Additionally, the device includes an active-low Enable signal (Gഥ), which functions as a 
master control switch. The Enable (Gഥ) and Direction (DIR) signals are logically ANDed to 
determine when and in which direction the bus lines will be activated. This mechanism 
ensures controlled bidirectional data transfer, preventing bus conϐlicts and signal 
contention. Like the 74LS244, the 74LS245 is designed to handle a sink current of 24 mA 
and a source current of -15 mA, making it efϐicient for driving buses over extended circuit 
layouts. 

v Importance of Tri-State and Bidirectional Buffers in Microprocessors 

Tri-state and bidirectional buffers are essential in microprocessor-based systems because 
they enable efϐicient bus sharing, signal integrity, and reduced power consumption. In 
microprocessors such as the 8085, where the data bus (D7-D0) is multiplexed with the 
lower 8 bits of the address bus (AD7-AD0), tri-state buffers and latches (such as the 
74LS373) are used to separate the address and data lines effectively. The use of octal 
buffers like 74LS244 and 74LS245 ensures that only the required device actively 
communicates on the bus while keeping all other devices in a high-impedance state, 
thereby minimizing bus contention and enhancing system reliability. These buffers are 
commonly found in memory interfacing, peripheral communication, and data bus 
management applications, making them fundamental components in microprocessor 
architecture and digital systems. 

 

Figure 7: Logic Diagram of the 74LS244 Octal Buffer 
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Chapter 3. The 8085 Instruction Set 

The 8085 instructions can be classiϐied into the following ϐive functional categories: data 
transfer (copy) operations, arithmetic operations, logical operations, branching 
operations, and machine-control operations. The 8085 instruction set is structured to 
perform a wide range of operations essential for efϐicient computation and system control. 
Data transfer, arithmetic, logical, branching, and machine control instructions 
collectively enable the microprocessor to execute complex tasks and interact with memory 
and peripheral devices effectively. Understanding these instruction groups is fundamental 
for developing efϐicient assembly language programs and optimizing system performance 
in embedded and general-purpose applications.  

1. Addressing Modes Available in 8085 

The 8085 microprocessor uses different addressing modes to access data efϐiciently 
depending on the instruction type. These modes enhance program ϐlexibility and efϐiciency 
by allowing operations on immediate values, registers, and memory locations. Addressing 
modes deϐine how the operand (data or memory address) is speciϐied in an instruction. The 
8085 microprocessor supports the following ϐive types of addressing modes: 

1. Immediate Addressing Mode 

In this mode, the operand (data) is explicitly speciϐied in the instruction. The data is 
provided immediately after the opcode in memory.  
MVI A, 32H  ; Load the immediate value 32H into the accumulator 

2. Register Addressing Mode 

The operand is stored in a register, and the instruction speciϐies the register name. The 
operation is performed using register contents. 
MOV A, B  ; Move the contents of register B to register A 

3. Direct Addressing Mode 

The instruction provides a 16-bit memory address where the operand is stored. The μp 
fetches the data from that memory location. 
LDA 2500H  ; Load the contents of memory location 2500H into A 

4. Indirect Addressing Mode 

The memory address where the operand is stored is speciϐied in a register pair (HL, BC, 
or DE). The microprocessor accesses the memory using the address stored in the register 
pair.  
MOV A, M  ; Load the contents of memory location pointed by HL into A 

5. Implicit (Implied) Addressing Mode 

The operand is implied by the instruction itself; it does not require additional data or an 
address. The operation is performed on a predeϐined register (usually accumulator A). 
CMA   ; Complement (invert) the contents of the accumulator 
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2. Classification of 8085 Instructions 

The instructions in the 8085 microprocessor can be categorized into ϐive primary 
functional groups: data transfer operations, arithmetic operations, logical operations, 
branching operations, and machine control operations. Each category serves a speciϐic role 
in processing and executing instructions efϐiciently within the microprocessor. 

i Data Transfer (Copy) Operations 

Data transfer operations involve copying data from one location, referred to as the source, 
to another location, known as the destination, while preserving the original contents of the 
source. Although the term "transfer" is commonly used, it does not imply that the original 
data is removed; instead, it remains intact at its source location. These operations facilitate 
communication between different components within the microprocessor, ensuring 
smooth data ϐlow. 

Data transfer can occur in multiple ways. It includes copying data between registers, where 
one register’s contents are duplicated in another. The microprocessor can also load a 
speciϐic data byte into a register or a memory location, allowing immediate data usage. 
Another common operation involves transferring data between memory and a register, 
where the contents of a memory location are loaded into a register or stored back into 
memory. Additionally, data transfer between an I/O device and the accumulator is an 
essential function, enabling interaction with external peripherals such as keyboards, 
displays, or sensors. 

Examples of these operations include copying the contents of register B into register D, 
loading register B with the hexadecimal value 32H, moving data from memory location 
2000H to register B, or transferring input from a keyboard into the accumulator. 

ii Arithmetic Operations 

Arithmetic instructions are responsible for executing fundamental mathematical 
operations such as addition, subtraction, increment, and decrement. These operations 
primarily involve the accumulator, which serves as the central register for arithmetic 
computations. In addition operations, an 8-bit number, the contents of a register, or data 
stored in a memory location can be added to the contents of the accumulator. The sum is 
stored in the accumulator, ensuring the processor maintains the most recent computed 
result. However, direct addition between two general-purpose registers, such as adding 
register B to register C, is not possible. The DAD instruction, which handles 16-bit data, is 
an exception, as it allows direct addition of values stored in register pairs. 

Subtraction follows a similar approach, where an 8-bit value, register contents, or memory 
data can be subtracted from the accumulator. The operation is carried out using two’s 
complement arithmetic, ensuring accurate representation of negative results when 
necessary. If the result is negative, it is stored in two’s complement form within the 
accumulator. Like addition, subtraction cannot be directly performed between two 
general-purpose registers. Increment and decrement operations modify data by increasing 
or decreasing the value of a register or memory location by one. These operations differ 
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from standard addition and subtraction because they can be executed on any register or 
memory location without requiring the use of the accumulator. Additionally, the 16-bit 
contents of register pairs, such as BC, can also be incremented or decremented directly. 

iii Logical Operations 

Logical instructions execute bitwise operations, enabling data manipulation at the binary 
level. These operations include AND, OR, Exclusive-OR (XOR), rotate, compare, and 
complement functions, all of which interact with the contents of the accumulator. 

Bitwise AND, OR, and XOR operations allow data stored in the accumulator to be logically 
combined with an 8-bit number, a register, or a memory location. The result is stored in 
the accumulator, enabling logical decision-making and bitwise data processing. Rotation 
operations shift the bits within the accumulator to the left or right, moving each bit to its 
adjacent position. This operation is particularly useful in applications such as bitwise 
multiplication, division, and data encryption. 

The compare operation checks whether an 8-bit number, register contents, or memory 
value is equal to, greater than, or less than the contents of the accumulator. The results of 
this operation inϐluence the status ϐlags, which can be used in conditional branching 
decisions. Complementing the accumulator reverses its binary content, replacing all 0s 
with 1s and 1s with 0s. This is commonly used in negative number representation and 
bitwise inversion tasks. Logical instructions in the 8085 microprocessor are used to 
perform bit-wise operations, such as AND, OR, XOR, and Complement. The instructions 
below do not affect carry ϐlags but modify zero (Z), sign (S), and parity (P) ϐlags. Here are 
four important logical instructions: 

1. CMA (Complement Accumulator) 

Operation: Inverts all bits of the accumulator (A). This instruction is useful in bitwise 
inversion operations and logical manipulations. Effect: Converts each 0 to 1 and each 1 to 
0 in A. Example:  

MVI A, 55H   ; Load A with 55H (01010101 in binary) 

CMA          ; Complement A → A becomes AAH (10101010) 

2. ANI (AND Immediate with Accumulator) 

Operation: Performs bitwise AND between the accumulator (A) and an immediate 8-bit 
value. This instruction is used for bit masking and clearing unwanted bits. Instruction 
Format: ANI 8-bit data 

Effect: A = A & Immediate Value, Example:  

MVI A, F0H   ; Load A with F0H (11110000 in binary) 

ANI 0FH      ; AND A with 0FH (00001111) 

Before ANI: A = F0H (11110000) 

Masking with 0FH: F0H AND 0FH = 11110000 AND 00001111 = 00000000 
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After ANI: A = 00H 

3. XRI (Exclusive-OR Immediate with Accumulator) 

Operation: Performs bitwise XOR between the accumulator (A) and an immediate 8-bit 
value. 

Instruction Format: XRI data, Effect: A = A ⊕ Immediate Value, Example:  

MVI A, 55H   ; Load A with 55H (01010101 in binary) 

XRI AAH      ; XOR A with AAH (10101010) 

Binary XOR: 01010101 ⊕ 10101010 = 11111111 (FFH) 

After XRI: A = FFH 

This instruction is used for toggling speciϐic bits and encryption algorithms. 

4. ORA (Logical OR with Accumulator) 

Operation: Performs bitwise OR between the accumulator (A) and another register or 
memory location. This instruction is used for setting speciϐic bits in a register. 

Instruction Format: ORA R (for register) / ORA M (for memory) 

Effect: A = A | R (or Memory), Example:  

MVI A, 0CH   ; Load A with 0CH (00001100 in binary) 

MVI B, 03H   ; Load B with 03H (00000011 in binary) 

ORA B         ; A ← A | B 

Before ORA: A = 0CH (00001100), B = 03H (00000011) 

OR operation: 00001100 OR 00000011 = 00001111 (0FH) 

After ORA: A = 0FH 

iv Rotate Instructions in 8085 

Rotate Instructions in 8085 Microprocessor: Rotate instructions in the 8085 
microprocessor are used to shift or rotate the bits in the accumulator (A) either left or right. 
These instructions help in bitwise operations. 

Table 6 Types of Rotate Instructions in 8085 

Instruction Mnemonic Operation 
Effect on Carry Flag 
(CY) 

Rotate Left RLC 
Shifts all bits left; MSB → CY,  
CY → LSB 

CY = MSB 

Rotate Right RRC 
Shifts all bits right; LSB → CY,  
CY → MSB 

CY = LSB 

Rotate Left through Carry RAL 
Shifts all bits left; MSB → CY,  
CY → LSB 

CY is used as extra bit 
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Instruction Mnemonic Operation 
Effect on Carry Flag 
(CY) 

Rotate Right through Carry RAR 
Shifts all bits right; LSB → CY,  
CY → MSB 

CY is used as extra bit 

1. RLC (Rotate Left) 

Mnemonic: RLC 

Operation: Shifts all bits left by one position. The MSB (D7) is copied into Carry (CY) and also 

placed in LSB (D0). 

Before:  A =  10101100   (AC) 

After :  A =  01011001  (59) 

Carry  = 1 

MVI A, 0ACH   ; Load A with AC (10101100) 

RLC           ; Rotate left, A = 59 (01011001), CY = 1 

2. RRC (Rotate Right) 

Mnemonic: RRC 

Operation: Shifts all bits right by one position. The LSB (D0) is copied into Carry (CY) and also 

placed in MSB (D7). 

Before:  A =  10101100  (AC) 

After :  A =  01010110  (56) 

Carry  = 0 

MVI A, 0ACH   ; Load A with AC (10101100) 

RRC           ; Rotate right, A = 56 (01010110), CY = 0 

3. RAL (Rotate Left through Carry) 

Mnemonic: RAL 

Operation: Shifts all bits left, but the previous Carry flag (CY) is shifted into LSB (D0). The MSB 

(D7) is moved to Carry. 

Before:  A =  10101100  (AC), CY = 1 

After :  A =  01011001  (59) 

Carry  = 1 

MVI A, 0ACH   ; Load A with AC (10101100) 

STC           ; Set Carry Flag (CY = 1) 

RAL           ; Rotate left through carry 

4. RAR (Rotate Right through Carry) 

Mnemonic: RAR 

Operation: Shifts all bits right, but the previous Carry flag (CY) is shifted into MSB (D7). 

The LSB (D0) is moved to Carry. 

Before:  A =  10101100  (AC), CY = 1 
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After :  A =  11010110  (D6) 

Carry  = 0 

MVI A, 0ACH   ; Load A with AC (10101100) 

STC           ; Set Carry Flag (CY = 1) 

RAR           ; Rotate right through carry 

v Branching Operations 

Branching instructions alter the normal sequence of program execution by redirecting 
control ϐlow based on speciϐic conditions. These operations allow programs to implement 
loops, conditional execution, and subroutine calls, making them fundamental for 
structured programming. 

Jump instructions provide an essential mechanism for conditional execution. Conditional 
jumps evaluate a speciϐic condition, such as checking if the zero ϐlag or carry ϐlag is set, 
before altering the program sequence. If the condition is met, execution jumps to a 
designated memory address, otherwise, the program continues sequentially. In contrast, 
unconditional jumps redirect execution to a different memory location without evaluating 
any conditions, ensuring direct program ϐlow redirection. 

vi Machine Control Operations 

Machine control instructions manage essential processor functions, such as halting 
execution, handling interrupts, and performing no-operation (NOP) tasks. These 
instructions provide direct control over the microprocessor’s behavior and are particularly 
useful in power management, debugging, and interrupt servicing. The HLT instruction 
stops the execution of the program indeϐinitely, causing the processor to remain idle until 
an external reset or interrupt resumes operation. Interrupt handling is another critical 
function, allowing the processor to respond to external events and execute designated 
interrupt service routines. Additionally, the NOP (No Operation) instruction performs no 
computational task but occupies one machine cycle, making it useful for timing 
adjustments and debugging purposes. 

Machine control instructions in the 8085 microprocessor are used to control processor 
operations, such as halting execution, enabling/disabling interrupts, and controlling the 
system bus. These instructions do not affect the ϐlags and are primarily used for system 
control and efϐiciency. 

1. HLT (Halt the Processor) 

Operation: Stops execution and places the microprocessor in a halt state. The system clock 
continues, but instruction execution stops until a reset occurs. Used at the end of a program 
to stop execution. 

MVI A, 32H   ; Load 32H into accumulator 

HLT           ; Halt the processor 

2. NOP (No Operation) 
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Operation: Executes no operation and simply increments the Program Counter (PC). No 
changes to registers or memory. Used for delays, timing adjustments, and debugging 
programs. 

NOP    ; No operation, simply advances to the next instruction 

3. DI (Disable Interrupts) 

Operation: Disables all maskable interrupts (except TRAP). Prevents any interrupts (INTR, 
RST 7.5, RST 6.5, RST 5.5) from occurring. Used in critical sections of code where interrupts 
should not interfere. 

4. EI (Enable Interrupts) 

Operation: Enables all maskable interrupts (INTR, RST 7.5, RST 6.5, RST 5.5). Allows the 
microprocessor to recognize and process interrupts. Used after DI to re-enable interrupts 
in a program. 

Example programs in 8085 microprocessor add two 16-bit numbers 

MVI C, 2EH ; Move immediate byte 2EH to register C. 

MVI E, DBH ; Move immediate byte DBH to register E. 

MOV A, E  ; Move the content of the E register to register A. 

ADD C  ; A ← A+C, Add the content of C register to Accumulator. 

MOV L, A  ; Copy the content of Accumulator(A) to L register 

MVI B, 2FH ; Move immediate byte 2FH into the B register.  

MVI D, 3BH ; Move immediate byte 3BH into the D register.  

MOV A, D  ; Move the content of the D register to the “A” register.  

ADC B  ; A ← A + B+ [CY], ADD the content of B register to A with carry ϐlag. 

MOV H, A  ; Copies the content of the Accumulator to the H register.  

HLT  ; Terminating the program.  
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Chapter 4. Memory and I/O Interfacing 

Memory can be classiϐied into two groups: prime (system or main) memory and storage 
memory. The R/WM and ROM are examples of prime memory; this is the memory the 
microprocessor uses in executing and storing programs. This memory should be able to 
respond fast enough to keep up with the execution speed of the microprocessor. Therefore, 
it should be random access memory, meaning that the microprocessor should be able to 
access information from any register with the same speed (independent of its place in the 
chip). The size of a memory chip is speciϐied in terms of bits. For example, a 1K memory 
chip means it can store 1K (1024) bits (not bytes). On the other hand, memory in a system 
such as a PC is speciϐied in bytes. For example, 4M memory in a PC means it has 4 megabytes 
of memory. Basic Deϐinitions in Microprocessors and Computing are given below,  

Bit (Binary Digit): A bit is the smallest unit of data in a computer and can have only two 
possible values: 0 or 1. It represents the binary number system, which is the foundation of 
all digital computing. 

Byte: A byte consists of eight bits and is the standard unit for data storage and memory 
addressing. 

Example: 11010101 (8-bit binary number) represents one byte. 

Word: A word is a ϐixed-sized group of bits that a processor handles as a unit. 

The size of a word depends on the processor architecture: 8-bit processors (like 8085) use 
an 8-bit word. 16-bit processors use a 16-bit word. 32-bit processors use a 32-bit word. 

Double Word: A double word consists of two words (twice the word size of the processor). 

In a 16-bit processor, a double word is 32 bits (2 × 16 bits). In a 32-bit processor, a double 
word is 64 bits (2 × 32 bits). 

Quad Word: A quad word is four times the size of a word. For a 16-bit processor, a quad 
word is 64 bits. For a 32-bit processor, a quad word is 128 bits. These are commonly used 
in advanced computing for data processing and ϐloating-point operations.  

Instruction: An instruction is a command given to the microprocessor to perform a speciϐic 
operation. It consists of an opcode (operation code) and operands (data or addresses 
involved in the operation). Instructions are classiϐied into data transfer, arithmetic, logical, 
control, and branching instructions. 

1. Memory Classification 

The other group is the storage memory, such as magnetic disks and tapes. This memory is 
used to store programs and results after the completion of 

i  RAM 

As the name suggests, the microprocessor can write into or read from this memory; it is 
popularly known as Random Access memory (RAM). It is used primarily for information 
that is likely to be altered, such as writing programs or receiving data. This memory is 
volatile, meaning that when the power is turned off, all the contents are destroyed. Two 



37 | P a g e  

types of R/W memories - static and dynamic-are available; they are described in the 
following paragraphs. A key characteristic of R/W memory is that it is volatile, meaning 
that all stored information is lost when the power supply is turned off. Due to this property, 
RAM is often supplemented by non-volatile storage devices such as hard drives or ϐlash 
memory to retain important data. 

ii Static RAM (SRAM) 

Static Random-Access Memory (SRAM) is a high-speed memory type built using ϐlip-ϐlops, 
where each memory cell requires six transistors to store a single bit. Unlike Dynamic RAM 
(DRAM), SRAM retains its data as long as power is supplied, without requiring periodic 
refreshing. 

Advantages: Faster access time compared to DRAM. More reliable since it does not require 
refreshing. Used as cache memory in high-speed processors (e.g., Intel 486 and Pentium). 

Disadvantages: Lower density due to its complex circuitry. Higher power consumption 
compared to DRAM. More expensive than DRAM, making it impractical for large memory 
sizes. For performance enhancement, SRAM is often integrated within the processor as 
cache memory or used externally to improve system speed. 

iii Dynamic RAM (DRAM) 

Dynamic Random-Access Memory (DRAM) consists of MOS transistor gates that store each 
bit as an electrical charge. Unlike SRAM, the charge leaks over time, requiring periodic 
refreshing to maintain data integrity. 

Advantages: Higher density than SRAM, allowing more storage per chip. Lower power 
consumption compared to SRAM. Cheaper to manufacture, making it suitable for large 
memory requirements. 

Disadvantages: Slower than SRAM due to refresh cycles. Requires additional circuitry for 
memory refreshing, adding to system complexity. DRAM is commonly used in main 
memory (RAM) of computers, particularly when memory requirements exceed 8 KB, as it 
is more cost-effective than SRAM for larger systems. 

iv Masked ROM (Read-Only Memory) 

Masked ROM is a permanently programmed memory where bit patterns are recorded 
using a masking and metallization process during manufacturing. 

Advantages: Ideal for mass production since it offers low per-unit cost at high volumes. 
Provides fast and stable storage for ϐirmware and essential system code.  

Disadvantages: Non-modiϐiable once programmed, making updates impossible. High 
initial production cost, making it economical only for large-scale manufacturing. Masked 
ROM is commonly used in consumer electronics, embedded systems, and industrial 
controllers, where the stored program does not change. 
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v Programmable Read-Only Memory (PROM) 

PROM is a type of ROM that allows the user to program it once using a special PROM 
programmer. The memory consists of nichrome or polysilicon wires arranged in a matrix, 
which are selectively burned during programming to store a permanent bit pattern. 

Advantages: Allows customization of memory content after manufacturing. More ϐlexible 
than Masked ROM. 

Disadvantages: Once programmed, it cannot be erased or reprogrammed. Any errors in 
programming make the chip unusable. PROM is useful in applications where ϐirmware 
needs to be customized post-manufacturing but does not require future modiϐications. 

vi Erasable Programmable Read-Only Memory (EPROM) 

EPROM stores data by charging the ϐloating gate of a Field-Effect Transistor (FET). It can 
be erased by exposing the chip to ultraviolet (UV) light through a quartz window on the 
chip and then reprogrammed using an EPROM programmer. 

Advantages: Can be erased and reused multiple times, making it ideal for development 
and testing. Provides non-volatile storage for ϐirmware and system software. 

Disadvantages: Erasure requires specialized UV light exposure, which is time-consuming. 
Limited reprogramming cycles compared to modern alternatives like EEPROM and Flash 
memory. EPROM is commonly used in prototyping, product development, and 
experimental projects where reprogramming may be necessary. 

vii Electrically Erasable Programmable Read-Only Memory (EEPROM) 

EEPROM is similar to EPROM but allows erasure and reprogramming using electrical 
signals, eliminating the need for UV light exposure. 

Advantages: Selective erasure and reprogramming at the byte level, unlike EPROM which 
requires  full erasure. Useful for remote software updates without requiring physical access 
to the chip. 

Disadvantages: Slower write operations compared to modern Flash memory. Limited 
write endurance, typically allowing 10,000 to 100,000 rewrite cycles. EEPROM is used in 
applications where frequent updates to ϐirmware or conϐiguration data are required, such 
as BIOS chips, smart cards, and industrial automation systems. 

viii Flash Memory 

Flash memory is an advanced version of EEPROM, designed for faster erasure and 
programming. It is widely used for storage devices, embedded systems, and modern 
microcontrollers. 

Advantages: Higher write endurance than EEPROM (up to 1 million cycles). Lower power 
consumption, making it suitable for battery-powered devices. Can be programmed using 
low voltage levels (as low as 1.8V). 
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Disadvantages: Unlike EEPROM, it cannot be erased at the byte level. Instead, erasure 
occurs at sector (block) level or entire memory level. Flash memory is extensively used in 
USB drives, memory cards, SSDs (Solid-State Drives), and embedded system ϐirmware 
storage. 

Comparison of Different Memory Types 

Memory Type Volatility Rewrite Capability Speed Use Case 

SRAM Volatile Yes Very Fast Cache memory, high-speed computing 

DRAM Volatile Yes Moderate Main system memory (RAM) 

Masked ROM Non-volatile No Fast Mass-produced firmware storage 

PROM Non-volatile One-time programmable Fast Custom firmware (fixed programs) 

EPROM Non-volatile Erasable (UV light) Moderate Prototyping, development 

EEPROM Non-volatile Electrically erasable Moderate Firmware updates, configuration data 

Flash Memory Non-volatile Block-wise rewrite Fast USB drives, SSDs, embedded systems 

 

2. Memory Read Machine Cycle 

Sequence of Events When 8085 Reads from Memory 

When the 8085 microprocessor performs a memory read operation, it follows a specific sequence 
of events to fetch data from memory. The steps involved in this process are as follows: 

Step-by-Step Memory Read Cycle 

Place Address on Address Bus: The 8085 places the 16-bit memory address (from the Program 
Counter or other register) on the Address Bus (A0–A15). The lower eight bits (A0–A7) are 
multiplexed with the data bus (AD0–AD7).  

Activate the Control Signals: The Memory Read (RDതതതത) signal is activated (low) to indicate a read 
operation. The IO/Mഥ  signal is set to 0, indicating that a memory operation (not an I/O operation) 
is in progress. 

Enable Address Latch (ALE Signal): The Address Latch Enable (ALE) signal is generated to 
separate the lower address bits from the multiplexed address/data bus. This allows external latch 
circuits to hold the lower address until the read cycle is completed. 

Memory Device Responds: The memory chip, selected by the address bus, places the requested 
data byte on the data bus (D0–D7). 

Microprocessor Reads Data: 8085 reads the data from the data bus and stores it in the 
accumulator or a register. 

Deactivate Control Signals: The RDതതതത (Read) signal is deactivated (set to high). The Address and 
Data Bus are released for the next operation. 
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Figure 8. Timing diagram of 8085 Memory Read machine cycle. 

 

3. Memory-Write Operation 

During a memory-write operation, the 8085 microprocessor stores data from a register usually 

the accumulator) into a specific memory location. The process involves generating appropriate 

control signals and managing data flow. The microprocessor generates the following control 

signals to coordinate the writing process: 

IO/Mഥ  (Input/Output or Memory Select Signal) 

Value: 0 (Low), Function: Specifies that a memory operation (not an I/O operation) is in progress. 

WRതതതതത (Write Control Signal) 

Value: 0 (Active Low), Function: Enables the memory device to store data from the 

microprocessor. 

ALE (Address Latch Enable) 

Value: Pulsed High, Function: Latches the lower byte of the address onto an external latch since 

the address/data bus (AD0–AD7) is multiplexed. 

 

Figure 9: Timing diagram of memory write machine cycle. 

Direction of Data Flow on the Data Bus 

 The 8085 places the memory address on the Address Bus (A15–A0). 
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 The ALE signal is activated to latch the lower address byte. 

 The data to be written is placed on the Data Bus (D7–D0). 

 The WRതതതതത signal goes LOW, instructing memory to store the data.  

 Once the memory acknowledges the write operation, the WRതതതതത signal returns HIGH. 

4. Requirements of a memory chip and microprocessor bus 

To interface a memory chip with a microprocessor, certain requirements must be met to 
ensure proper addressing, selection, and data transfer. 

1. Address Lines and Memory Register Identiϐication: A memory chip consists of multiple 
memory registers, each requiring a unique address. The number of address lines needed 
for a memory chip is determined by the total number of registers (memory locations) it 
contains. In 8085 microprocessor, which has 16 address lines, it can theoretically address 
up to: 65,536 (64 KB). However, not all 16 address lines may be required by every memory 
chip. The necessary address lines for the memory chip must be directly connected to the 
microprocessor's address bus to enable memory addressing. 

Chip Select (CSጟ ) Signal for Memory Enable: A memory chip must be activated before it can 
be accessed by the microprocessor. This activation is controlled by the Chip Select (CSጟ ) 
signal. 

Chip Selection: The remaining unused address lines from the microprocessor can be 
connected to the (CSጟ ) pin of the memory chip through interfacing logic (such as a decoder 
or address latch). 

Enabling the Memory Chip: When the correct logic combination of address lines activates 
the CSጟ  signal, the corresponding memory chip is enabled, allowing data transfer. 

3. Addressing a Speciϐic Memory Register: Once the memory chip is selected, the 
microprocessor must further identify the speciϐic memory register (location) within the 
chip where data needs to be read or written. The CSጟ  signal selects the memory chip. The 
address lines of the microprocessor are then used to specify the exact memory location 
(register) within the chip. The logic states (0s and 1s) of all connected address lines 
determine the exact memory address being accessed. 

4. Control Signals for Read and Write Operations: The microprocessor uses control signals 
to manage data transfer between memory and itself via the data bus. 

Memory Read Operation: The Read (RDጟ ) control signal is activated by the microprocessor. 
This enables the output buffer of the memory chip. The contents of the selected memory 
register are placed on the data bus and sent to the microprocessor. 

Memory Write Operation: The Write (WRጟ ) control signal is activated by the microprocessor. 
This enables the input buffer of the memory chip. Data from the microprocessor is 
transferred via the data bus and stored in the selected memory register. 
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A model of typical memory chip representing the above requirements is shown in ϐigure 
below. 
 

 
Figure 10: Model of typical memory chip 

5. Interfacing of 𝟏𝐊 (𝟏𝟎𝟐𝟒 × 𝟖) memory 

The memory chip has 1024 registers; therefore ten address lines (Aଽ − A଴) are required to 
identify the registers. The remaining six address lines (Aଵହ − Aଵ଴) of the microprocessor 
are used for the Chip Select (CSതതത) signal. In ϐigure 11 the memory chip is enabled when the 
address lines Aଵହ − Aଵ଴ are at logic 0. The address lines Aଽ − A଴ can assume any address of 
the 1024 registers, starting from all zeros to all 1s. The memory addresses range from 
0000H to 03FFH. By combining the high-order and low-order address lines we can specify 
the complete address range  of a given chip.  

The memory address can be changed to any other location by changing the hardware of the 
CSതതത line. For example, if Aଵହ is connected to the NAND gate without an inverter, the memory 
addresses will range from 8000 H to 83FFH. 

6. Timing Diagram for Opcode Fetch Operation 

The Opcode Fetch Cycle is the ϐirst step in executing an instruction. During this cycle, the 
8085 microprocessor fetches the opcode (operation code) of the instruction from memory. 
Steps in the Opcode Fetch Cycle— 

T1 (First Clock Cycle) Program Counter (PC) places the memory address on the Address 
Bus (A15–A0). The Address Latch Enable (ALE) signal is HIGH, indicating that the lower 
byte of the address is being latched. The IO/Mഥ  signal is LOW (0), indicating a memory 
operation. RDതതതത (Read) is HIGH (inactive).  

 

 
Figure 11: Interfacing memory with microprocessor 
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T2 (Second Clock Cycle): The memory responds by placing the opcode on the Data Bus (D7–D0). 

The RDതതതത signal is activated (LOW), allowing data transfer from memory to the microprocessor. 

The ALE signal goes LOW after address latching.  

T3 (Third Clock Cycle): The opcode is read into the instruction register of the microprocessor. 

The RDതതതത signal is deactivated (HIGH), completing the memory read cycle. 

The Data Bus is now free for the next operation. 

T4 (Fourth Clock Cycle): The fetched opcode is decoded, and execution of the instruction begins. 

The processor prepares for the next operation. 

 
Figure 12. Opcode fetch machine cycle timing diagram 

7. Memory-Mapped I/O and I/O-Mapped I/O Schemes 

In 8085 microprocessor, peripheral devices (I/O devices) can be interfaced using two 
addressing schemes: Memory-Mapped I/O and I/O-Mapped I/O. These schemes determine 
how the processor accesses I/O devices. 

1. Memory-Mapped I/O 

In this scheme, I/O devices are treated as memory locations. The 16-bit address bus is used 
to address both memory and I/O devices. Standard memory access instructions (LDA, STA, 
MOV M, A) are used to transfer data to and from the I/O device. No separate I/O 
instructions are required. 

LDA 3000H   ; Load data from I/O device at address 3000H into A 

STA 3001H   ; Store data from A to I/O device at address 3001H 

2. I/O-Mapped I/O  

I/O devices are assigned separate address space (using an 8-bit address). Special I/O 
instructions (IN and OUT) are used for data transfer. The 8085 uses the IO/Mഥ  control signal 
to differentiate between memory and I/O access. A maximum of 256 I/O ports (00H to FFH) 
can be interfaced. 
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IN 20H    ; Read data from I/O port 20H into A 

OUT 30H   ; Send data from A to I/O port 30H 

Table 7 Difference between the two techniques 

Feature Memory-Mapped I/O I/O-Mapped I/O 

Addressing 
Space 

Uses 16-bit memory addresses Uses 8-bit I/O addresses 

Number of 
Devices 

64 KB (65,536 I/O locations) 
256 Input and 256 Output devices 
(00H–FFH) 

Instructions 
Used 

Uses memory instructions (LDA, STA, 
MOV M, A) 

Uses I/O instructions (IN, OUT) 

Operations on 
Data 

Supports arithmetic and logical 
operations directly 

Requires data to be transferred to 
registers before processing 

Speed Slower (because of memory decoding) Faster (direct I/O access) 

Control Signal 
Used 

Uses MEMRതതതതതതതതത and MEMWതതതതതതതതതത Uses IORതതതതത and IOWതതതതതത 

Application 
Used in systems with fewer I/O 
devices 

Used when many I/O devices are 
needed 

 

8. Interface a 2732 EPROM (4K bytes) memory chip 

The interfacing circuit for 2732 chip is shown below with steps for understanding.  

Interfacing Circuit 

Figure 13 below shows an interfacing circuit using a 3-to-8 decoder to interface the 2732 
EPROM memory chip. It is assumed here that the chip has already been programmed, and 
we will analyze the interfacing circuit in terms of the same three steps outlined previously: 
Step 1: The 8085 address lines 𝐴ଵଵ − 𝐴଴ are connected to pins 𝐴ଵଵ − 𝐴଴ of the memory chip 
to address 4096 registers. 

Step 2: The decoder is used to decode four address lines Aଵହ − Aଵଶ. The output O଴ of the 
decoder is connected to Chip Enable (CEതതതത). The CEതതതത is asserted only when the address on 
Aଵହ − Aଵଶ is 0000; Aଵହ (low) enables the decoder and the input 000 asserts the output O଴.  

Step 3: For this EPROM, we need one control signal: Memory Read (MEMRതതതതതതതതത), active low. The 
MEMRതതതതതതതതത is connected to OEതതതത to enable the output buffer; OEതതതത is the same as RDതതതത signal.  

Address Decoding and Memory Addresses 

We can obtain the address range of this memory chip by analyzing the possible logic levels 
on the 16 address lines. The logic levels on the address lines Aଵହ − Aଵଶ must be 0000 to 
assert the Chip Enable, and the address lines Aଵଵ − A଴ can assume any combinations from 
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all 0s to all 1s. Therefore, the memory address of this chip ranges from 0000H to 0FFFH, as 
shown below. 

 

 

Figure 13: Interfacing the 2732 EPROM chip 

Interfacing I/O Devices 

The I/O devices, such as keyboards and displays, are the ears and eyes of the MPUs; they 
are the communication channels to the "outside world." Data can enter (or exit) in groups 
of eight bits using the entire data bus; this is called the parallel I/O mode. The other method 
is the serial I/O, whereby one bit is transferred using one data line; typical examples 
include peripherals such as the CRT terminal and cassette tape.  

i Interfacing I/O Devices in 8085 Microprocessor 

Input/Output (I/O) devices serve as the primary communication channels between a 
microprocessor and the external world. These devices include keyboards, displays, 
printers, and storage peripherals, which facilitate data exchange between the user and the 
microprocessor unit (MPU). Data can be transferred using two fundamental methods: 
parallel I/O and serial I/O. 

In parallel I/O mode, data is transferred in groups of eight bits (one byte) simultaneously 
using the entire data bus. This method is efϐicient for high-speed communication, 
commonly used in keyboards, printers, and memory-mapped devices. In contrast, serial 
I/O mode transfers data one bit at a time over a single data line. This approach is employed 
in peripherals such as CRT terminals, serial communication interfaces, and cassette tape 
storage systems, where bitwise data transmission is necessary due to hardware 
constraints or communication protocols. 

ii Peripheral I/O Instructions in 8085 

The 8085 microprocessor provides two specialized instructions for data transfer between 
the processor and I/O devices: IN and OUT. These instructions allow the microprocessor 
to communicate with external input and output devices by reading data from or writing 
data to an assigned I/O port address. It is also called I/O-mapped I/O. 
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The IN instruction (opcode DB) is used to receive data from an input device, such as a 
keyboard. The data is loaded into the accumulator (A) for further processing. The OUT 
instruction (opcode D3) sends the contents of the accumulator to an output device, such as 
an LED display, which then displays the data. Both IN and OUT are two-byte instructions, 
where the ϐirst byte contains the opcode, and the second byte speciϐies the port address of 
the I/O device. 

For example, the OUT instruction follows this format: 

Opcode Operand → OUT 8-bit Port Address 

This instruction copies the contents of the accumulator (A) and sends them to the output 
device assigned to the speciϐied port address. If an LED display is mapped to port address 
01H, the instruction stored in memory would be: 

MVI A, 55H    ; Load accumulator with data (e.g., 55H) 
OUT 01H        ; Send the data to the output port (LED display) 

In this case, if port 01H is assigned to an LED display, the binary equivalent of 55H 
(01010101) would be displayed. 

iii I/O Addressing and Device Assignment 

The 8085 microprocessor can interface with 256 different I/O ports, each identiϐied by an 
8-bit address ranging from 00H to FFH. This means that up to 256 distinct input and output 
devices can be assigned unique addresses for communication. 

The assignment of an I/O port address to a speciϐic device is not predetermined by the 
microprocessor. Instead, it is arbitrarily decided based on system design constraints and 
available logic circuits. The hardware designer selects the appropriate I/O addresses for 
devices based on chip select logic, decoder circuits, and available ports in the system. 

To fully understand how the 8085 executes IN/OUT instructions, it is essential to analyze 
the bus operations and signal control mechanisms that facilitate communication between 
the processor and peripheral devices. Proper design of I/O interfacing circuits ensures 
efϐicient data transfer, minimal bus conϐlicts, and optimal performance in microprocessor-
based systems. 

Absolute vs. Partial Decoding in Microprocessor-Based Systems 

Address decoding is an essential process in microprocessor-based systems, ensuring that 
memory and I/O devices are accessed correctly. Decoding techniques determine how 
uniquely an address is mapped to a speciϐic peripheral or memory location. The two 
primary approaches are absolute decoding and partial decoding, each with its own 
advantages and trade-offs. 

iv Absolute Decoding 

In absolute decoding, all relevant address lines are fully decoded to generate a unique 
selection signal for a speciϐic memory or I/O device. This method ensures that the device 
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is activated only at a single, predetermined address. For example, in a system where an 
output port is mapped to address 01H, absolute decoding ensures that the device responds 
exclusively to this address and is not mistakenly accessed by any other address. 

This approach is considered a good design practice, particularly in large systems with 
multiple I/O devices and memory modules, because it eliminates the risk of overlapping 
addresses and prevents unintentional device activation. However, absolute decoding 
requires more hardware components, such as address decoders or logic gates, making it a 
costlier solution in terms of circuit complexity and space. 

v Partial Decoding 

To reduce hardware complexity and minimize costs, some systems use partial decoding, 
where only a subset of address lines is used to select a device. Instead of decoding all 
address bits, some address lines are left unconnected or replaced with control signals such 
as IO/Mጟ  and WRጟ . This means that multiple addresses can select the same device, leading to 
address redundancy, similar to foldback memory addressing. 

For example, if address lines A1 and A0 are not used for decoding, a device originally 
assigned to address 01H can now be accessed by multiple addresses, such as 00H, 01H, 
02H, and 03H. In this case, the latch or output port will respond to any of these four 
addresses, effectively increasing the number of addresses that can activate the same 
device. 

Partial decoding is commonly used in small systems where the number of peripherals is 
limited and overlapping addresses do not cause conϐlicts. As long as these extra addresses 
are not assigned to other devices, the system can function correctly. However, if multiple 
devices share the same address unintentionally, it can lead to erroneous data transfer or 
system malfunction. 

vi Choosing Between Absolute and Partial Decoding 

Absolute decoding provides precise address selection and prevents conϐlicts, making it 
ideal for large-scale systems with multiple devices. However, it requires additional 
decoding hardware, increasing circuit complexity and cost. Partial decoding is a cost-
effective solution, reducing hardware requirements by allowing fewer address lines to 
control device selection. This approach is suitable for simpler systems with fewer 
peripherals, provided that overlapping addresses do not interfere with other devices. 

9. Comparison of Memory-Mapped I/O and Peripheral I/O 

Table 8 Comparison of Memory-Mapped I/O and Peripheral I/O 

Characteristics Memory-Mapped I/O Peripheral I/O 

1. Device address 16-bit 8-bit 

2. Control signals 
for Input/Output 

 MEMR തതതതതതതതതത/ MEMW തതതതതതതതതതത  IOR/IOW തതതതതതതതതതതതതത 
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3. Instructions 
available 

Memory-related instructions such as STA; 
LDA; LDAX; STAX; MOV M,R: ADD M; SUB 

M; ANA M: etc. 
IN and OUT 

4. Data transfer Between any register and I/O 
Only between I/O and the 

accumulator 

5. Maximum 
number of I/Os 

possible 

The memory map ( 64 K ) is shared 
between I/Os and system memory 

The I/O map is independent of 
the memory map; 256 input 

devices and 256 output devices 
can be connected 

6. Execution speed 
13 T-states (STA,LDA) 
7 T-states (MOV M,R) 

 10 T -states 

7. Hardware 
requirements 

More hardware is needed to decode 16-
bit address 

Less hardware is needed to 
decode 8-bit address 

8. Other features 
Arithmetic or logical operations can be 

directly performed with I/O data 
Not available 
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Chapter 5. 8085 Programming Model 

The programming model consists of some segments of the ALU and the registers. This 
model does not reϐlect the physical structure of 8085 but includes the information that is 
critical in writing assembly language programs. The architecture of 8085 includes an 
arithmetic and logic unit (ALU), a register array, and a control unit. It supports a variety of 
instruction types, including arithmetic, logical, data transfer, and control instructions. The 
microprocessor communicates with external memory and peripherals using a system bus, 
which consists of an address bus, data bus, and control bus. The instruction set of the 8085 
microprocessor is designed to support efϐicient execution of operations. It includes single-
byte, two-byte, and three-byte instructions, allowing for ϐlexible programming. The 
microprocessor can execute instructions in a few clock cycles, making it suitable for 
applications requiring real-time processing.  

Machine language is a low-level programming language that consists of binary code (0s and 
1s) that the microprocessor can directly execute. It is speciϐic to a particular processor and 
difϐicult for humans to read or write. Assembly language is a human-readable version of 
machine language, using mnemonics (such as MOV, ADD, and SUB) instead of binary code. 
It requires an assembler to convert the assembly code into machine code. Assembly 
language provides better readability and ease of programming compared to machine 
language. 

1. Programming Model 

The model consists of six registers, accumulators, and ϐlag registers. In addition, it has two 
16-bit registers: the stack pointer and the program counter. They are described brieϐly as 
follows. 

i REGISTERS 

The 8085 has six general-purpose registers to store 8-bit data, identiϐied as B, C, D, E, H, 
and L. They can be combined as register pairs BC, DE, and HL to perform 16-bit operations. 
The programmer can use these registers to store or copy data into the registers using data 
copy instructions. 

ii ACCUMULATOR 

The accumulator is an 8-bit register part of the arithmetic/logic unit (ALU). This register is 
used to store 8-bit data and to perform arithmetic and logical operations. The result of an 
operation is stored in the accumulator: The accumulator is also identiϐied as register A. 

iii FLAGS 

The ALU includes ϐive ϐlip-ϐlops, which are set or reset after an operation according to the 
data conditions of the result in the accumulator and other registers. They are called Zero 
(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) ϐlags. The most commonly used 
ϐlags are Zero, Carry, and Sign. The microprocessor uses these ϐlags to test data conditions. 
These ϐlags have critical importance in the decision-making process of the microprocessor. 
The ϐlags' conditions (set or reset) are tested through software instructions. For example, 
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the instruction JC (Jump On Carry) is implemented to change the sequence of a program 
when the CY ϐlag is set. A thorough understanding of ϐlags is essential in writing assembly 
language programs. 

The following ϐlags are set or reset after executing an arithmetic or logic operation; data 
copy instructions do not affect any ϐlags. See the instruction set (Appendix F) to ϐind how 
ϐlags are affected by an instruction. 

Z-Zero: The Zero ϐlag is set to 1 when the result is zero; otherwise, it is reset. CY-Carry: If 
an arithmetic operation results in a carry, the CY ϐlag is set; otherwise, it is reset. S-Sign: 
The Sign ϐlag is set if bit 𝐷଻ of the result = 1; otherwise it is reset. P-Parity: If the result has 
an even number of 1s, the ϐlag is set; for an odd number of 1s, the ϐlag is reset. AC-Auxiliary 
Carry: In an arithmetic operation, when a carry is generated by a digit 𝐷ଷ and passed to the 
digit Dସ, the AC ϐlag is set. This ϐlag is used internally for BCD (binary-coded decimal ) 
operations; there is no Jump instruction associated with this ϐlag. 

iv Program Counter (PC) and Stack Pointer (SP) 

These are two 16-bit registers used to hold memory addresses. These registers are 16 bits 
because the memory addresses are 16 bits. The microprocessor uses the PC register to 
sequence the execution of the instructions. The function of the program counter is to point 
to the memory address from which the next byte is to be fetched. When a byte (machine 
code) is being fetched, the program counter is incremented by one to point to the next 
memory location. 

The stack pointer is also a 16-bit register used as a memory pointer. It points to a memory 
location in R/W memory called the stack. The beginning of the stack is deϐined by loading 
a 16-bit address in the stack pointer.  

2. Instruction Classification 

An instruction is a binary pattern designed inside a microprocessor to perform a speciϐic 
function. The entire group of instructions, called the instruction set, determines what 
functions the microprocessor can perform. The 8085 microprocessor includes the 
instruction set of its predecessor, the 8080A, plus two additional instructions. 

The 8085 microprocessor supports the following addressing modes: 
1. Immediate Addressing – The operand is speciϐied in the instruction (e.g., MVI A, 05H). 
2. Register Addressing – The operand is in a register (e.g., MOV A, B). 
3. Direct Addressing – The address of the operand is speciϐied (e.g., LDA 2500H). 
4. Indirect Addressing – The address is stored in a register pair (e.g., MOV A, M). 
5. Implied Addressing – The operand is implied (e.g., CMA). 

i Immediate Addressing Mode 

In immediate addressing mode, the operand is speciϐied directly in the instruction. The 
data is provided immediately after the opcode in memory. This mode is used when the 
value to be operated on is known at the time of programming. 
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Example: 

MVI A, 32H  ; Load the immediate value 32H into the accumulator 

ii Direct Addressing Mode 

In direct addressing mode, the memory address from which data is to be fetched or stored 
is speciϐied in the instruction. This mode allows direct access to a speciϐic memory location. 
Example: 

LDA 2500H  ; Load the contents of memory location 2500H into the accumulator 

iii Register Addressing Mode 

In register addressing mode, the operand is stored in one of the registers of the 
microprocessor. This mode allows faster execution as data is accessed directly from 
registers rather than memory. Example: 

MOV A, B  ; Copy the contents of register B into register A 

iv Indirect Addressing Mode 

In indirect addressing mode, the memory address of the operand is stored in a register pair. 
The microprocessor ϐirst retrieves the memory address from the register pair and then 
accesses data from that memory location. Example: 

MOV A, M  ; Load the contents of the memory location pointed to by HL into A 

v Implied Addressing Mode 

In implied addressing mode, the operand is not explicitly mentioned in the instruction. 
Instead, it is understood by the operation itself. This mode is often used in accumulator-
based operations. Example: 

CMA  ; Complement the contents of the accumulator 

3. Instruction Format and Examples 

An instruction in the 8085 microprocessor consists of an opcode (operation code) and an 
operand (data, memory location, or register). Based on their structure, instructions are 
classiϐied into three formats. 

i One-Byte Instructions 

These instructions consist of a single byte, including both opcode and operand (if any). 
They are simple instructions that require minimal memory. Example: 

CMA  ; Complement the accumulator 

ii Two-Byte Instructions 

These instructions consist of an opcode followed by an 8-bit operand (data or address). 
They require two memory locations for execution. Example: 
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MVI A, 32H  ; Move immediate value 32H to accumulator 

iii Three-Byte Instructions 

These instructions consist of an opcode followed by a 16-bit operand. They require three 
memory locations for execution. Example: 

LDA 2500H  ; Load the contents of memory location 2500H into A 

Example program using DAA instruction 

The DAA (Decimal Adjust Accumulator) instruction is used in the 8085 microprocessor to 
adjust the result of BCD (Binary-Coded Decimal) addition. The program below adds two 
BCD numbers and ensures a correct BCD result using the DAA instruction. 

MVI A, 27H      ; Load first BCD number (27 in BCD) 

MVI B, 59H      ; Load second BCD number (59 in BCD) 

ADD B           ; A ← A + B (27H + 59H = 80H) 

DAA             ; Adjust the result to BCD format 

STA 3000H       ; Store the final BCD result at memory location 3000H 

HLT             ; Halt the program 

The DAA instruction works in two steps: 

If the lower nibble (D3-D0) of the accumulator is greater than 9 or the Auxiliary Carry (AC) 
ϐlag is set, DAA adds 06H to the accumulator. If the upper nibble (D7-D4) is greater than 9 
or the Carry (CY) ϐlag is set, DAA adds 60H to the accumulator.  

This program adds two BCD numbers in 8085 using the DAA instruction to ensure a valid 
BCD result. DAA instruction is useful when working with BCD arithmetic, as it 
automatically corrects any invalid BCD results. 

Jump Instructions in 8085 Microprocessor 

Jump instructions in the 8085 microprocessor are used to alter the normal sequence of 
program execution by transferring control to a speciϐied memory location. These 
instructions are classiϐied into two types: Conditional Jump and Unconditional Jump.   

Conditional jump instructions transfer control only if a condition is met, making them 
useful in decision-making operations. Unconditional jump instructions always transfer 
control, ensuring a direct program ϐlow change. These instructions help in implementing 
loops, conditional execution, and function calls, making programs more structured and 
efϐicient. 

1. Conditional Jump Instructions 

Conditional jump instructions transfer control to a speciϐied address only if a speciϐic 
condition is met. These conditions depend on the status of the ϐlag register after an 
arithmetic or logical operation. 
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Table 9 Summary of various jump instructions 

Instruction Mnemonic Condition  Example 

Jump If Zero JZ addr Z = 1 (Zero flag set) 
JZ 2000H (Jump to 2000H if the 
result is zero) 

Jump If Not Zero JNZ addr 
Z = 0 (Zero flag 
reset) 

JNZ 3000H (Jump to 3000H if 
the result is non-zero) 

Jump If Carry JC addr 
CY = 1 (Carry flag 
set) 

JC 2500H (Jump to 2500H if 
carry is generated) 

Jump If No Carry JNC addr 
CY = 0 (Carry flag 
reset) 

JNC 4000H (Jump to 4000H if 
no carry) 

Jump If Positive JP addr 
S = 0 (Sign flag 
reset) 

JP 5000H (Jump to 5000H if the 
result is positive) 

Jump If Minus JM addr S = 1 (Sign flag set) 
JM 4500H (Jump to 4500H if 
the result is negative) 

Jump If Parity 
Even 

JPE addr 
P = 1 (Parity flag 
set) 

JPE 5500H (Jump to 5500H if 
parity is even) 

Jump If Parity 
Odd 

JPO addr 
P = 0 (Parity flag 
reset) 

JPO 6000H (Jump to 6000H if 
parity is odd) 

Program Using Conditional Jump: 

  MVI A, 05H   ; Load A with 05H 

  CPI 05H      ; Compare A with 05H 

  JZ MATCH    ; Jump to MATCH if A = 05H 

  HLT          ; Halt if not matched 

      MATCH:  MVI B, 10H   ; Load B with 10H 

  HLT          ; Halt the program 

If A equals 05H, control jumps to the MATCH label; otherwise, the program halts. 

2. Unconditional Jump Instructions 

Unconditional jumps always transfer control to a specified address, regardless of any 
conditions. 

Instruction  Mnemonic Operation   Example 

Jump    JMP addr Unconditionally jumps to  JMP 2000H (Jump to               

      specified address   2000H)  
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Program Using Unconditional Jump: 

LXI H, 2500H   ; Load HL with 2500H 

JMP 3000H      ; Unconditionally jump to 3000H 

HLT            ; This instruction is skipped 

4. Arithmetic Instructions in 8085 

Arithmetic instructions in the 8085 microprocessor perform basic mathematical 
operations such as addition, subtraction, increment, and decrement. These operations 
primarily involve the accumulator (A) since the 8085 is an accumulator-based 
microprocessor. The results of these operations affect the ϐlag register, updating ϐlags such 
as Zero (Z), Sign (S), Carry (CY), Auxiliary Carry (AC), and Parity (P) to indicate the status 
of computations. 

Below are the different arithmetic instructions used in the 8085 microprocessor, along 
with their examples and descriptions. 

1. Addition Instructions 

(i) ADD R (Add Register to Accumulator) 

This instruction adds the contents of a register (B, C, D, E, H, or L) to the accumulator (A) 
and stores the result in the accumulator. 

Opcode: ADD R 

Example: ADD B (Adds the contents of register B to A and stores the result in A) 

(ii) ADD M (Add Memory to Accumulator) 

This instruction adds the contents of the memory location pointed to by the HL register 
pair to the accumulator. 

Opcode: ADD M 

Example: If HL = 2500H and Memory[2500H] = 10H, executing ADD M will add 10H to A. 

(iii) ADI Data (Add Immediate Data to Accumulator) 

This instruction adds an 8-bit immediate value to the accumulator. 

Opcode: ADI 8-bit data 

Example: ADI 05H (Adds 05H to A and stores the result in A) 

(iv) ADC R (Add Register to Accumulator with Carry) 

This instruction performs addition along with the carry (CY) ϐlag. It adds the contents of a 
register and the carry ϐlag to the accumulator. 

Opcode: ADC R 

Example: If A = 08H, B = 02H, and CY = 1, executing ADC B results in A = 0BH (08H + 02H + 
1). 

(v) ADC M (Add Memory to Accumulator with Carry) 



55 | P a g e  

This instruction adds the memory contents (pointed by HL) and the carry ϐlag to the 
accumulator. 

Opcode: ADC M 

Example: If HL = 2500H, Memory[2500H] = 15H, and CY = 1, executing ADC M will add 15H 
+ Carry to A. 

(vi) ACI Data (Add Immediate Data with Carry to Accumulator) 

This instruction adds an 8-bit immediate value and the carry ϐlag to the accumulator. 

Opcode: ACI 8-bit data 

Example: ACI 10H (Adds 10H and Carry to A and stores the result in A) 

2. Subtraction Instructions 

(i) SUB R (Subtract Register from Accumulator) 

This instruction subtracts the contents of a register from the accumulator (A) and stores 
the result in A. 

Opcode: SUB R 

Example: SUB C (Subtracts the contents of register C from A and stores the result in A) 

(ii) SUB M (Subtract Memory from Accumulator) 

This instruction subtracts the contents of a memory location (pointed by HL) from the 
accumulator. 

Opcode: SUB M 

Example: If Memory[2500H] = 05H, executing SUB M will subtract 05H from A. 

(iii) SUI Data (Subtract Immediate Data from Accumulator) 

This instruction subtracts an 8-bit immediate value from the accumulator. 

Opcode: SUI 8-bit data 

Example: SUI 0AH (Subtracts 0AH from A and stores the result in A) 

(iv) SBB R (Subtract Register from Accumulator with Borrow) 

This instruction subtracts the contents of a register and the carry (borrow) ϐlag from the 
accumulator. 

Opcode: SBB R 

Example: If A = 10H, D = 05H, and CY = 1, executing SBB D results in A = 0AH (10H - 05H - 
1). 

(v) SBB M (Subtract Memory from Accumulator with Borrow) 

This instruction subtracts the memory contents (pointed by HL) and the borrow ϐlag from 
the accumulator. 

Opcode: SBB M 

Example: If Memory[2500H] = 08H, CY = 1, executing SBB M subtracts 08H and CY from A. 
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(vi) SBI Data (Subtract Immediate Data with Borrow from Accumulator) 

This instruction subtracts an 8-bit immediate value and the borrow ϐlag from the 
accumulator. 

Opcode: SBI 8-bit data 

Example: SBI 05H (Subtracts 05H and Carry from A and stores the result in A) 

(iv) DCR M (Decrement Memory by 1) 

This instruction decrements the contents of the memory location pointed by HL. 

Opcode: DCR M 

Example: If Memory[3000H] = 25H, executing DCR M results in Memory[3000H] = 24H. 

(v) INX RP (Increment Register Pair by 1) 

This instruction increments a 16-bit register pair (BC, DE, or HL) by 1. 

Opcode: INX RP 

Example: INX H (Increments HL register pair by 1) 

(vi) DCX RP (Decrement Register Pair by 1) 

This instruction decrements a 16-bit register pair by 1. 

Opcode: DCX RP 

Example: DCX B (Decrements BC register pair by 1) 

Arithmetic instructions in the 8085 microprocessor allow performing addition, 
subtraction, increment, and decrement operations efϐiciently. Since 8085 is an 
accumulator-based microprocessor, most arithmetic operations involve register A 
(accumulator). These instructions play a crucial role in data manipulation, counters, and 
mathematical computations, making them essential for programming microprocessor-
based systems. 

5. Increment Instructions In 8085 

The 8085 microprocessor provides different types of increment instructions to increase the value 

of registers, memory locations, and register pairs. These instructions modify the value stored in 

the specified location. 

1. INR (Increment Register or Memory) 

Mnemonic: INR R (for register)/INR M (for memory) 

Operation: Increments the 8-bit contents of a register or a memory location by 1. Affects Zero (Z), 

Sign (S), Parity (P), and Auxiliary Carry (AC) flags but does not affect the Carry (CY) flag. 

Incrementing Register (INR B) 

MVI B, 05H    ; Load B with 05H 

INR B         ; Increment B → B = 06H 

Incrementing Memory Location (INR M) 

LXI H, 2000H  ; Load HL with address 2000H 
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INR M         ; Increment contents at memory location 2000H 

2. INX (Increment Register Pair) 

Mnemonic: INX RP 

Operation: Increments the 16-bit contents of a register pair (BC, DE, HL, SP) by 1. No flags are 

affected. 

Incrementing HL Register Pair (INX H) 

LXI H, 2500H  ; Load HL with 2500H 

INX H         ; HL = HL + 1 → HL = 2501H 

Incrementing Stack Pointer (INX SP) 

LXI SP, 3000H  ; Load SP with 3000H 

INX SP         ; SP = 3001H 

6. Simple Assembly Language Programs for 8085 

The following 8085 assembly language programs demonstrate basic operations such as 
data transfer, arithmetic operations, looping, and I/O handling. 

i Move Data from One Register to Another 

This program moves data from register B to register C. 

MVI B, 55H    ; Load register B with 55H 
MOV C, B      ; Copy contents of B to C 
HLT            ; Halt the program 

ii Addition of Two 8-bit Numbers 

This program adds two 8-bit numbers and stores the result in the accumulator. 

MVI A, 25H    ; Load first number (25H) into accumulator 
MVI B, 15H    ; Load second number (15H) into register B 
ADD B          ; Add B to A 
HLT            ; Halt the program 

iii Increment a Number 10 Times Using a Loop 

This program increments a number 10 times using a loop. 

 MVI C, 0AH    ; Load counter with 10 
 MVI A, 00H    ; Initialize accumulator with 0 
LOOP:  INX A    ; Increment A 
       DCR C    ; Decrement counter 
       JNZ LOOP   ; Jump to LOOP if C ≠ 0 
 HLT           ; Halt the program 
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Chapter 6. 8051 Microcontroller 

A microcontroller is a compact, self-contained computing device designed to perform 
speciϐic control-oriented tasks. Unlike a microprocessor, which requires external memory 
and peripherals, a microcontroller integrates a CPU, memory (RAM and ROM), 
input/output (I/O) ports, timers, and serial communication interfaces on a single chip. 
Microcontrollers are commonly used in embedded systems, where they control devices 
such as home appliances, automotive systems, medical instruments, and industrial 
automation equipment. 

1. Introduction to the 8051 Microcontroller 

The 8051 microcontroller, developed by Intel in 1980, is one of the most widely used 8-bit 
microcontrollers. It is based on the Harvard architecture, meaning it has separate memory 
spaces for program instructions and data. The 8051 family includes several variants, with 
different manufacturers producing compatible versions that extend its functionality. 

i Difference Between Microprocessor and Microcontroller 

Although microprocessors and microcontrollers share similarities in architecture and 
function, they are distinct in their design and application. A microprocessor is a general-
purpose processing unit that requires external components such as memory, input/output 
interfaces, and peripheral devices to function. It is primarily used in systems where 
ϐlexibility and computational power are required, such as personal computers and high-
performance computing devices. 

A microcontroller, on the other hand, is a compact integrated circuit that combines a 
processor, memory, and input/output peripherals on a single chip. It is designed for 
speciϐic control-oriented applications, such as embedded systems in automobiles, 
industrial automation, consumer electronics, and medical devices. Due to its integrated 
design, a microcontroller typically operates with lower power consumption and requires 
minimal external hardware compared to a microprocessor-based system. 

The key differences between a microprocessor and a microcontroller can be summarized 
as follows. A microprocessor is suited for high-speed data processing applications that 
demand complex computations and external memory management, whereas a 
microcontroller is optimized for real-time control applications where efϐiciency, low power 
consumption, and compact design are priorities. Microcontrollers often include additional 
features such as analog-to-digital converters (ADC), timers, and communication protocols, 
making them highly suitable for embedded applications. 

The 8085 microprocessor and 8051 microcontroller differ in terms of architecture, instruction 
set, and intended applications. 

ii Instruction Set Differences 

8085 has an instruction set designed mainly for arithmetic and logical operations, control 
instructions, and memory interfacing.  8051 includes additional instructions for bitwise 
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operations, I/O operations, and timer/counter handling, making it suitable for embedded 
applications. 

 

iii Architecture Differences 

Table 10 Differences between microprocessor and microcontroller 

Feature 8085 Microprocessor 8051 Microcontroller 

Type General-purpose microprocessor 
Embedded system 
microcontroller 

Data Bus 8-bit 8-bit 

Address Bus 16-bit (can address 64 KB memory) 
16-bit (can address 64 KB 
external memory) 

Internal Memory 
No built-in RAM or ROM (requires 
external memory) 

It has 4 KB ROM and 128 
bytes RAM 

I/O Ports Needs external interfacing 
Has four built-in 8-bit I/O 
ports 

Timers/Counters Not available Two built-in 16-bit timers 

2. Architecture of the 8051 Microcontroller 

The 8051 microcontroller is based on the Harvard architecture, where program memory 
and data memory are separate, allowing simultaneous instruction execution and data 
access. It is an 8-bit microcontroller that includes an on-chip CPU, memory, input/output 
ports, timers, interrupts, and a serial communication interface. 

Main Components of the 8051 Architecture 

i Central Processing Unit (CPU) 

The CPU is responsible for fetching, decoding, and executing instructions stored in program 
memory. It controls all internal operations and coordinates data transfer between 
registers, memory, and peripherals. The 8051 follows a single-cycle instruction execution 
process for most instructions, ensuring efϐicient operation. 

ii Memory Organization 

The 8051 microcontroller has two types of memory: Program Memory (ROM): The 8051 
includes 4 KB of on-chip ROM for storing program instructions. However, external program 
memory up to 64 KB can be interfaced for larger applications. Data Memory (RAM): The 
microcontroller contains 128 bytes of on-chip RAM, which is divided into:  

32 General-Purpose Registers (R0–R7) organized into four banks. 

16-bit Addressable Registers (Bit-addressable space: 20H to 2FH). 
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A general-purpose memory area (30H to 7FH) for temporary data storage. 

Special Function Registers (SFRs) used for controlling I/O operations, timers, interrupts, 
and serial communication. 

iii Special Function Registers (SFRs) 

SFRs are dedicated registers that control various functionalities of the microcontroller. 
Some important SFRs include: 

Accumulator (A) – Used for arithmetic and logical operations. 

B Register – Used for multiplication and division instructions. 

Program Status Word (PSW) – Contains status ϐlags (carry, auxiliary carry, overϐlow, parity, 
etc.). 

Stack Pointer (SP) – Points to the top of the stack in RAM. 

Data Pointer (DPTR) – A 16-bit register used for external memory addressing. 

Timer Registers (TCON, TMOD, TH0, TL0, TH1, TL1) – Control timer/counter operations. 

iv Input/Output Ports 

The 8051 has four 8-bit bidirectional I/O ports: 

Port 0 (P0) – Acts as a multiplexed address/data bus when interfacing with external 
memory. 

Port 1 (P1) – A simple I/O port with no additional functionality. 

Port 2 (P2) – Used for higher-order address bytes in external memory operations. 

Port 3 (P3) – Contains special function pins for serial communication, interrupts, and 
timers. 

v Timers and Counters 

The 8051 microcontroller has two 16-bit timers/counters (Timer 0 and Timer 1) used for 
time delays, event counting, and waveform generation. These timers operate in different 
modes (Mode 0 to Mode 3) to handle various timing and counting functions. 

vi Interrupt System 

The 8051 supports ϐive interrupt sources, which enable efϐicient handling of external and 
internal events. These include: 

External Interrupts (INT0 and INT1). 

Timer Interrupts (TF0 and TF1). 

Serial Communication Interrupt (RI/TI). 

The microcontroller prioritizes interrupts using an interrupt enable register (IE) and 
interrupt priority register (IP). 

vii Serial Communication Interface 

The 8051 features a full-duplex UART (Universal Asynchronous Receiver-Transmitter) for 
serial communication. The SBUF register is used for transmitting and receiving data, while 
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the SCON register conϐigures the serial communication mode. The microcontroller can 
communicate with external devices via RS-232, SPI, or I2C protocols. 

viii Clock and Oscillator Circuit 

The 8051 requires an external crystal oscillator (typically 12 MHz) to generate the clock 
signal, which synchronizes all operations. The machine cycle in the standard 8051 takes 12 
clock cycles, making the execution speed 1 MIPS (Million Instructions Per Second) at 12 
MHz. 

The 8051 microcontroller architecture is optimized for control applications with its 
efϐicient CPU, memory management, I/O capabilities, timer/counter operations, interrupt 
handling, and serial communication support. Its compact design and built-in peripherals 
make it widely used in embedded systems, industrial automation, consumer electronics, 
and automotive applications. 

3. I/O Ports in 8051 Microcontroller 

The 8051 microcontroller has four 8-bit parallel I/O ports (P0, P1, P2, and P3), each 
consisting of 8 bidirectional lines. These ports allow the microcontroller to interface with 
external devices such as sensors, displays, and communication peripherals. 

Port 0 (P0) – Serves as a multiplexed address and data bus when interfacing with external 
memory. It requires external pull-up resistors when used as an I/O port. 

Port 1 (P1) – A simple bidirectional I/O port that does not have any alternate functions. It 
is used for general-purpose input/output operations. 

Port 2 (P2) – Acts as an I/O port or higher-order address lines (A8–A15) when accessing 
external memory. 

Port 3 (P3) – Functions as an I/O port, but also has alternate functions, such as:  

P3.0 (RXD) & P3.1 (TXD): Serial communication pins. 

P3.2 (INT0) & P3.3 (INT1): External interrupts. 

P3.4 (T0) & P3.5 (T1): Timer inputs. 

P3.6 (WR) & P3.7 (RD): External memory read/write control. 

Each I/O port in 8051 can be programmed as input or output by conϐiguring the 
corresponding bits in the Special Function Registers (SFRs). 

4. Basic Concept of Memory in 8051 

The 8051 microcontroller follows Harvard architecture, meaning it has separate memory 
spaces for program and data storage. It includes both internal and external memory 
options to store instructions and data. 

Program Memory (ROM): The 8051 has 4 KB of internal ROM, used to store the program 
code. If additional space is needed, external ROM (up to 64 KB) can be interfaced using the 
PSENጟ  (Program Store Enable) signal. 
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Data Memory (RAM): The microcontroller includes 128 bytes of internal RAM, divided into:  

General-purpose RAM (30H–7FH): Used for temporary data storage. 

Register Banks (00H–1FH): Four banks of registers (R0–R7) for quick data access. 

Bit-Addressable Memory (20H–2FH): Allows bitwise operations on 16 bytes. 

Stack Memory: Located within internal RAM and managed using the Stack Pointer (SP). 

External Data Memory (up to 64 KB) can be connected via Port 0 and Port 2 for applications 
requiring larger data storage. 

i Basic Idea of Addressing Modes in 8051 

Addressing modes deϐine how an instruction speciϐies the operand (data or memory 
location) to be processed. The 8051 microcontroller supports ϐive addressing modes: 

Immediate Addressing Mode: The operand is directly speciϐied in the instruction. 

Example: MOV A, #25H (Move 25H into the accumulator) 

Register Addressing Mode: The operand is stored in a register inside the CPU. 

Example: MOV A, R2 (Move contents of register R2 into the accumulator) 

Direct Addressing Mode: The operand is located in internal RAM or SFRs, and the 
instruction provides the exact address. 

Example: MOV A, 40H (Move data from RAM address 40H into A) 

Indirect Addressing Mode: The address of the operand is stored in a register (R0 or R1), 
which acts as a pointer. 

Example: MOV A, @R0 (Move data from memory location pointed by R0 into A) 

Indexed Addressing Mode: Used to access program memory (ROM), commonly for lookup 
tables. 

Example: MOVC A, @A+DPTR (Move contents of address (A + DPTR) into A) 

These addressing modes provide ϐlexibility and efϐiciency in handling data manipulation, 
memory access, and instruction execution in the 8051 microcontroller. 

5. Basic Instructions in 8051 Microcontroller 

The 8051 microcontroller supports a variety of instructions for data transfer, arithmetic 
operations, logical operations, and program control. These instructions help in executing 
tasks such as moving data, performing calculations, making decisions, and controlling 
program ϐlow. Below are some commonly used 8051 instructions, categorized based on 
their functionality, along with examples. 

i Data Transfer Instructions 

MOV (Move Data) 

This instruction copies data from one location to another without altering the source. 

Example 1: MOV A, #30H → Loads 30H into the accumulator. 

Example 2: MOV R0, A → Copies the accumulator's contents to register R0. 
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MOVX (Move External Data) 

Transfers data between the accumulator and external RAM (used in systems with external 
memory). 

Example: MOVX A, @DPTR → Moves data from the external memory location (pointed by 
DPTR) into A. 

MOVC (Move Code Memory) 

Used to fetch data from program memory (ROM). 

Example: MOVC A, @A+DPTR → Moves data from (A + DPTR) in ROM to A (used in lookup 
tables). 
 

ii Arithmetic Instructions 

ADD (Addition) 

Performs 8-bit addition between the accumulator and another register or memory 
location. 

Example 1: ADD A, R3 → Adds R3 to A, storing the result in A. 

Example 2: ADD A, #25H → Adds 25H to A. 

SUBB (Subtraction with Borrow) 

Subtracts a value from A, including the carry (borrow) ϐlag. 

Example: SUBB A, R5 → Subtracts R5 and carry ϐlag from A. 

INC (Increment) 

Increases the value of a register or memory location by 1. 

Example 1: INC A → Increments the accumulator by 1. 

Example 2: INC DPTR → Increments the data pointer (DPTR). 

DEC (Decrement) 

Decreases the value of a register or memory location by 1. 

Example: DEC R2 → Decreases the value in R2 by 1. 

iii Logical Instructions 

ANL (Logical AND) 

Performs a bitwise AND between the accumulator and another operand. 

Example: ANL A, #0FH → Performs A = A AND 0FH. 

ORL (Logical OR) 

Performs a bitwise OR operation. 

Example: ORL A, R1 → Performs A = A OR R1. 

XRL (Exclusive-OR) 

Performs a bitwise XOR operation. 

Example: XRL A, #AAH → Performs A = A XOR AAH. 

CPL (Complement) 

Inverts all bits in the accumulator. 
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Example: CPL A → Converts all 1s to 0s and 0s to 1s in A. 

iv Branching (Jump) Instructions 

SJMP (Short Jump) 

Performs a relative jump within a 256-byte range from the current instruction address. 

Example: SJMP LABEL → Jumps to LABEL if within -128 to +127 bytes. 

LJMP (Long Jump) 

Performs a direct jump anywhere in the 64 KB program memory. 

Example: LJMP 2000H → Jumps to address 2000H. 

JZ (Jump if Zero) 

Jumps to a speciϐied address if A = 0. 

Example:  

MOV A, #00H 

JZ TARGET  ; Jumps to TARGET if A is zero. 

JNZ (Jump if Not Zero) 

Jumps to a speciϐied address if A ≠ 0. 

Example:  

MOV A, #10H 

JNZ TARGET  ; Jumps to TARGET if A is non-zero. 

v Special Instructions 

NOP (No Operation) 

Performs no operation but consumes one machine cycle, useful for delays and debugging. 

Example: NOP 

RET (Return from Subroutine) 

Returns control from a subroutine to the main program. 

Example:  

CALL SUBROUTINE 

... 

SUBROUTINE: 

RET 

CLR (Clear Register) 

Clears the contents of a register, setting it to 0. 

Example: CLR A → Sets A = 00H. 

The 8051 microcontroller provides a rich set of instructions for data transfer, arithmetic, 
logical operations, branching, and control ϐlow. These instructions enable efϐicient data 
processing, decision-making, and program execution in embedded systems. Understanding 
and using these instructions correctly is essential for effective assembly language 
programming on the 8051 microcontroller. 
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vi Applications of the 8051 Microcontroller 

The 8051 microcontroller is widely used in various embedded systems and automation 
applications due to its low power consumption, compact size, built-in peripherals, and 
cost-effectiveness. Below are some key applications where the 8051 microcontroller is 
commonly used: 

vii Consumer Electronics 

Used in home appliances such as microwave ovens, washing machines, air conditioners, 
and refrigerators for automation and control. Found in TV remote controls, DVD players, 
and digital cameras for user interface and system control. 

viii Automotive Systems 

Controls engine management systems (ECUs) for fuel injection, ignition timing, and 
emissions control. Used in antilock braking systems (ABS), airbags, and power steering 
control units. Plays a role in speedometers, odometers, and other dashboard displays. 

ix Industrial Automation 

Employed in automated manufacturing and process control systems for monitoring and 
controlling industrial equipment. Used in robotics applications to manage actuators, 
sensors, and motion control systems. Plays a role in programmable logic controllers (PLCs) 
for industrial automation. 

x Medical Devices 

Integrated into heart rate monitors, blood pressure measuring devices, and glucose meters. 
Used in electronic stethoscopes, pacemakers, and infusion pumps for precise control. 

xi Security Systems 

Used in biometric authentication systems such as ϐingerprint scanners and facial 
recognition devices. Found in home security alarms, surveillance cameras, and access 
control systems. 

xii Embedded Systems and IoT 

Integrated into Internet of Things (IoT) applications for smart automation, remote 
monitoring, and sensor-based control. Used in smart trafϐic control systems for real-time 
vehicle management. 

The 8051 microcontroller continues to be widely used in modern embedded systems due 
to its simplicity, ϐlexibility, and ease of integration with external devices. 

6. Simple Programs for the 8051 Microcontroller 

Below are four simple assembly language programs for the 8051 microcontroller, 
demonstrating basic operations such as data transfer, arithmetic operations, and looping. 

Move Data from One Register to Another 

This program moves data from register R1 to register R2. 

MOV R1, #55H   ; Load R1 with 55H 
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MOV R2, R1     ; Copy the contents of R1 to R2 

END            ; End of the program 

Explanation: 

MOV R1, #55H → Loads the immediate value 55H into register R1. 

MOV R2, R1 → Copies the contents of R1 into R2. 

Addition of Two Numbers 

This program adds two 8-bit numbers and stores the result in the accumulator. 

MOV A, #25H    ; Load first number (25H) into accumulator 

ADD A, #15H    ; Add second number (15H) to accumulator 

END            ; End of the program 

Explanation: 

MOV A, #25H → Loads 25H into the accumulator (A). 

ADD A, #15H → Adds 15H to the accumulator. The result is stored in A. 

Loop to Increment a Number 10 Times 

This program increments a number in register R0 ten times using a loop. 

 MOV R0, #00H   ; Initialize R0 with 00H 
 MOV R1, #0AH   ; Load counter with 10 (0AH) 
 
LOOP:  INC R0    ; Increment R0 by 1 
       DJNZ R1, LOOP  ; Decrement R1 and repeat if not zero 
 
 END            ; End of the program 

Explanation: 

MOV R0, #00H → Initializes R0 with 0H. 

MOV R1, #0AH → Loads 10 (0AH) into R1 (loop counter). 

INC R0 → Increments R0. 

DJNZ R1, LOOP → Decrements R1 and jumps back to LOOP until R1 = 0. 

Sending Data to an Output Port (LED Blinking Example) 

This program sends data to Port 1 (P1) to control an LED or output device. 

MOV P1, #0FFH  ; Turn ON all LEDs connected to Port 1 
CALL DELAY     ; Call delay subroutine 
MOV P1, #00H   ; Turn OFF all LEDs 
CALL DELAY     ; Call delay subroutine 
SJMP HERE      ; Repeat indefinitely 

 
DELAY:  MOV R7, #0FFH  ; Outer loop 
        MOV R6, #0FFH  ; Inner loop 
D1:     DJNZ R6, D1    ; Decrement R6 and repeat 
        DJNZ R7, DELAY ; Decrement R7 and repeat 
        RET            ; Return from subroutine 
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Explanation: 

MOV P1, #0FFH → Sends FFH (all 1s) to Port 1, turning ON all LEDs. 

CALL DELAY → Calls the delay subroutine to create a time delay. 

MOV P1, #00H → Sends 00H (all 0s) to turn OFF the LEDs. 

SJMP HERE → Jumps back to repeat the process. 

DELAY subroutine creates a delay using nested loops. 

These basic 8051 programs demonstrate essential data movement, arithmetic, loops, and 
I/O control. They form the foundation for more advanced embedded system applications 
using the 8051 microcontroller. 
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Microprocessor MCQ (Multiple Choice Questions) 

1. How many memory locations are available in 8085 μp  ___ 

a) 32K 

b) 64K 

c) 16K 

d) 128K 

2. Interfacing of memory chip 6116 (2K bytes) with 8085 µp requires how many address 
lines 

a) 10   

b) 11 

c) 12 

d) 13 

3. A hypothetical microprocessor has 10 bits of address buses, then total memory locations 
available is __ 

a) 1K 

b) 2K 

c) 4K 

d) 8K 

4. What are the two 16-bit registers available in 8085 μp ? 

a) SP, PC 

b) A, B 

c) A, Flag register 

d) A, increment/decrement latch 

5. The microprocessor of a computer can operate on any information if it is present in
 only. 

a) Program Counter 

b) Flag 

c) Memory 

d) None of these 

6. Which of the following technologies was used by Intel to design its first 8-bit 
microprocessor? 

a) NMOS 

b) HMOS 

c) PMOS 

d) TTL 

7. A ‘DMA’ transfer implies        

a) direct transfer of data between memory and accumulator.  

b) Direct transfer of data between memory and I/O devices without use of µP  
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c) Transfer of data exclusively within µP registers  

d) A fast transfer of data between µP and I/O devices 

8. In 8-bit microprocessor, how many opcodes are theoretically possible?  

a) 246 

b) 278 

c) 250 

d) 256 

9. Which of the following is not true about the address bus? 

a) It consists of control PIN 21 to 28 

b) It is a bidirectional bus 

c) It is 16 bits in length 

d) Lower address bus lines (AD0  – AD7) are called “Line number” 

10. Which of the following is true about 8085 microprocessors? 

a) It has an internal memory 

b) It has interfacing circuits 

c) It contains ALU, CU, and registers 

d) None of these 

11. Which of the following is the possible sequence of operations in a microprocessor? 

a) Opcode fetch, memory read, memory write,  

b) Opcode fetch, memory write, memory read,  

c) I/O read, opcode fetch, memory read 

d) I/O read, opcode fetch, memory write 

12. Which of the following is not a property of TRAP interrupt in 8085 a microprocessor? 

a) It is a non-maskable interrupt 

b) It is of the highest priority 

c) It uses an edge-triggered signal 

d) It is a vectored interrupt 

13. Which of the following is a property of RST 7.5 interrupt? 

a) It is a non-maskable interrupt 

b) It has the third highest priority 

c) It uses a level-triggered signal 

d) Its vectored address is 0034H 

14. Which of the following is a special-purpose register of microprocessor? 

a) Program counter 

b) Instruction register 

c) Accumulator 

d) All of these 
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15. Which of the following circuits is used as a special signal to demultiplex the address 
bus and data bus? 

a) Priority Encoder 

b) Decoder 

c) Address Latch Enable 

d) Demultiplexer 

16. How many flip-flops are there in a flag register of 8085 microprocessor? 

a) 4 

b) 5 

c) 7 

d) 10 

17. Which of the following flags are used for BCD arithmetic operations in 
microprocessor? 

a) Sign flag 

b) Auxiliary Carry flag 

c) Parity flag 

d) Zero flag 

18. What does a microprocessor understand after decoding opcode? 

a) Perform ALU operation 

b) Go to memory 

c) Length of the instruction and number of operations 

d) Go to the output device 

19. How many address lines are present in 8086 microprocessor? 

a) 16 

b) 20 

c) 32 

d) 40 

20. Which of the following is a status flag in 8085 μp? 

a) Parity flag 

b) Direction flag 

c) Interrupt flag 

d) Index flag 

21. Which of the following is not a status flag in 8085? 

a) Trap flag 

b) Auxiliary Carry flag 

c) Parity flag 

d) Zero flag 

22. Which of the following register is not used in opcode fetch operations? 
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a) Program counter 

b) Memory address register 

c) Memory data register 

d) Flag register 

23. A memory connected to a microprocessor has 20 address lines and 16 data lines. 
What will the memory capacity be? 

a) 8 KB 

b) 2 MB 

c) 16 MB 

d) 64 KB 

24. Which of the following is not true about 8085 microprocessor? 

a) It is an 8-bit microprocessor 

b) It is a 40 pin DIP chip 

c) It is manufactured using PMOS technology 

d) It has 16 address lines 

25. Which of the following is a non-vectored input? 

a) TRAP 

b) RST-7.5 

c) RST-6.5 

d) INTR 

26. Which of the following is true for 8085 μp? 

a) Every instruction has two parts i.e., opcode and operands 

b) MOV B, C is a two-byte instruction 

c) MVI A, 90H is a three-byte instruction 

d) Maximum number of T-states possible for the execution of an instruction is 16 

27. What can be stored in the HL general-purpose register pair? 

a) Opcode 

b) Address of memory 

c) Address of next instruction 

d) Temporary data 

28. If an 8KB memory has to be connected to an 8085 μp, how many address lines are 
required? 

a) 11 

b) 12 

c) 13 

d) None of these 

29. Which of the following is a software interrupt? 

a) TRAP 
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b) INTR 

c) RST-6.5 

d) RST-5 

30. What is the vectored address of RST-5?  

a) 0010 H 

b) 0032 H 

c) 0028 H 

d) 0030 H 

31. Which of the following is true about stack pointer? 

a) Stack pointer contains the address of the top of the stack memory 

b) Stack pointer is an 8-bit register 

c) Stack pointer stores data permanently 

d) Stack pointer is initialized after stack operation 

32. If a peripheral is interfaced with 8085 μp in memory mapped I/O mode then it has 16-
bit address.  

a) True 

b) False 

c) It depends on the peripheral used 

33. In 8085, CALL instruction requires how many machine cycles? 

a) 2 

b) 3 

c) 4 

d) 5 

34. Which of the following is true about MOV A, B instruction? 

a) It means moving the content of register A to register B 

b) It uses immediate addressing mode 

c) It does not affect the flag register 

d) It is a 2-byte instruction 

35. Which of the following is false about LDA instruction? 

a) It is a 3-byte instruction 

b) It uses indirect addressing mode 

c) It has 13 T-states 

d) It does not affect any flags 

36. Which is of the following is true about STA instruction? 

a) It uses immediate addressing mode 

b) It is a 3-byte instruction 

c) It requires three machine cycles 
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d) The Accumulator is loaded with the content of memory 

37. Which pin is used to interface the slow peripheral with the 8085 μp? 

a) RESET 

b) Ready 

c) TRAP 

d) INTR  

38. What are two 16-bit registers available in 8051µc? 

a) DPTR 

b) PC 

c) Both a and b 

d) None of these 

39. Which of the following is true for the DAA instruction in 8085? 

a) It is used after hexadecimal addition 

b) It is used after BCD addition 

c) It is used after BCD subtraction 

d) It is used after hexadecimal subtraction 

40. Which of the following flag does not have a jump instruction associate with it? 

a) CY flag 

b) Parity flag 

c) Sign flag 

d) AC flag 

41. Suppose registers ‘A’ and ‘B’ contain 50H and 40H, respectively. After instruction 
MOV A, B, what will be the contents of registers A and B? 

a) 40H, 40H 

b) 50H, 40H 

c) 50H, 50H 

d) 60H, 40H 

42. Which microprocessor pins are used in the direct memory access operation? 

a) RESET 

b) Ready 

c) SID 

d) None of these 

43. Which of the following flag does not have a call instruction associate with it in 8085 μp 
? 

a) Z 

b) AC 

c) CY 
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d) P 

44. Which of the following is not correct about HLT instruction? 

a) It is a machine control instruction 

b) It is used to start the execution of the program 

c) PC is disconnected from the address bus 

d) A reset interrupt is required to come out of halt state 

45. When data required for instruction is present inside the register of a 
microprocessor then which of the following addressing mode is used? 

a) Indexed 

b) Register 

c) Relative 

d) Direct 

46. Which of the following interfacing IC is a DMA controller?  

a) 8257/37 

b) 8155 

c) 8253/54 

d) 8279 

47. Which of the following is a 3-byte instruction(s)? 

a) LDA 2500H 

b) IN 01H 

c) Both a and b 

d) None of these 

48. Which of the following is a register-indirect addressing mode instruction? 

a) LDA 2700H 

b) ADI 36H 

c) DAA 

d) LDAX B 

49. How many machine cycles are required by the LDA instruction? 

a) 2 

b) 3 

c) 4 

d) 5 

50. The address range of bit addressable area in 8051 microcontrollers is__ 

a) 20H–21H 

b) 30H–31H 

c) 20H–2FH 

d) None of these 

51. In an 8085 microprocessor, which one of the following instructions changes the content 
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of the accumulator?  

a) MOV B, M  

b) PCHL  

c) RNZ  

d) SBI BEH 

52. Write an instruction which is equivalent to 1-byte CALL instruction in 8085. 

a) CALL 2050H 

b) DAA 

c) PUSH PSW 

d) RST 1 

53. Write an instruction to clear the accumulator. 

a) ADD A 

b) XRA B 

c) XRA A 

d) SUB B 

54. What is/are the machine cycle(s) used by DCR M instructions in 8085? 

a) 1 

b) 2 

c) 3 

d) 4 

55. Scratch-pad memory available in 8051μc ranges from __ 

a) 20H-21H 

b) 21H-2FH 

c) 30H-3FH 

d) None of these  

56. The memory address of the last location of an 8K byte memory chip is FFFFH. Find the 
starting address. 

a) 1000H 

b) 2000H 

c) 1FFFH 

d) None of these 

57. What are the machine cycles IN 23H instruction have? 

a) Opcode fetch, memory read, memory write 

b) Opcode fetch, memory read, I/O read 

c) Opcode fetch, memory read, memory read 

d) Opcode fetch, memory read, I/O write 

58. What will be the value of register A after executing the following code? 

  MVI A, 0FH   
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CMA   
a) F0H 

b) 00H 

c) F1H 

d) F2H 

59. Which of the following instructions is used to disable interrupts in the 8085 
microprocessor? 

a) DI 

b) EI 

c) HLT 

d) NOP 

60. Which is of the following is true about SPHL instruction? 

a) It uses indexed addressing mode 

b) It is a 3-byte instruction 

c) It requires three T-states 

d) Contents of HL pair are moved to SP 

 

Answers to multiple choice questions 

Q no Answer Q no Answer Q no Answer Q no Answer Q no Answer Q no Answer 

1 b 11 a 21 a 31 a 41 a 51 d 

2 b 12 c 22 d 32 a 42 d 52 d 

3 a 13 a 23 c 33 d 43 b 53 c 

4 a 14 d 24 c 34 c 44 b 54 c 

5 c 15 c 25 d 35 b 45 b 55 d 

6 a 16 b 26 d 36 b 46 a 56 d 

7 b 17 b 27 b 37 b 47 a 57 b 

8 d 18 c 28 c 38 c 48 d 58 a 

9 b 19 b 29 d 39 b 49 c 59 a 

10 c 20 a 30 c 40 d 50 c 60 d 
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Short Answer Questions 

1. What is 8085 microprocessor? 

2. What are the basic units or building blocks of an 8085 microprocessor? 

3. What is Software and Hardware? 

4. What is the purpose of the stack in the 8085 microprocessor? 

5. What is assembly language? 

6. What are machine language and assembly language programs? 

7. Write an 8085-assembly language program to add two numbers stored in registers 
A and B, and store the result in register C. 

8. What are the different types of addressing modes in 8085? 

9. What is the drawback in machine language and assembly language programs? 

10. Deϐine bit, byte, and word. 

11. What is a bus? Why do data bus is bi-directional? 

12. Why is address bus unidirectional? 

13. What is the function of microprocessor in a system? 

14. What are the key features of the 8051 microcontroller? 

15. Write an 8051-assembly program to load the value 55H into register A and then 
complement it. 

16. Write and explain any two logical instructions of 8085 microprocessor. 

17. What is the function of the Program Counter (PC) in the 8085 microprocessor? 

18. What is the function of the TMOD register in the 8051 microcontroller? 

19. What is the purpose of the DPTR register in the 8051 microcontroller? 

20. How many machine cycles constitute one instruction cycle in 8085? Deϐine opcode 
and operand. 

21. What is an opcode fetch cycle? 

22. What operation is performed during the ϐirst T -state of every machine cycle in 
8085? 

23. Why are status signals provided in microprocessor? 

24. Can an input port and an output port have the same port address? 

25. How does the 8085 processor differentiate a memory (read/write) and I/O access 
(read/write)? 

26. How will the port number be affected if we decode the high-order address lines A15 
– A8 rather than A7 – A0? 
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27. If high-order lines are partially decoded, how can one determine whether it is 
peripheral I/O or memory-mapped I/O? 

28. In a memory mapped I/O, how does the microprocessor differentiate between an 
I/O and memory? Can an I/O have the same address as a memory register? 

29. Why is a 16-bit address (data) stored in memory in the reversed order-the low-
order byte ϐirst, followed by the high-order byte? 

30. When does the 8085-processor check for an interrupt? What is an interrupt 
acknowledge cycle? 

31. How are the interrupts affected by system reset? 

32. What are Software interrupts? 

33. What are Hardware interrupts? 

34. What is the difference between Hardware and Software interrupt? 

35. What is vectored and non-Vectored interrupt? 

36. Whether HOLD has higher priority than TRAP or not? 

37. What is masking and why is it required? 

38. When does the 8085 processor accept hardware interrupt? 

39. When will the 8085 processor disable the interrupt system? 

40. What is the function performed by EI and Dl instruction? 

41. How is the vector address generated for the INTR interrupt of 8085? 

42. How clock signals are generated in 8085 and what is the frequency of the internal 
clock? 

43. Explain the memory structure of the 8051 microcontroller. 

44. How does the 8051 handle input and output operations? 

45. What happens in a single-board microcomputer when the power is turned on and 
the Reset key is pushed? 

46. How does the microprocessor know how and when to start? 

47. What is a monitor program? 

48. What is an assembler? 

49. How does the microprocessor differentiate among a positive number, a negative 
number, and a bit pattern? 

50. If ϐlags are individual ϐlip-ϐlops, can they be observed on an oscilloscope? 

51. If the program counter is always one count ahead of the memory location from 
which the machine code is being fetched, how does the microprocessor change the 
sequence of program execution with a Jump instruction? 
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Descriptive Type Questions 

1. Differentiate between 8085 microprocessor and 8051 microcontroller with respect 
to their architecture and instructions. 

2. Describe any four logical instructions and explain them in detail. 

3. What are the different pins in the timing and control unit of the 8085 
microprocessor? Explain these pins with their functionality. 

4. What are the different types of register available in 8085? Classify these registers 
based on their size, operations performed, user accessibility and other criteria if 
any. 

5. Write a program in 8085 to add two BCD number in 8085 with the use of DAA 
instruction. Explain the instructions used in the program. 

6. Explain conditional and unconditional jump instructions available in the 8085 
microprocessor. 

7. Deϐine bit, byte, word, double word, quad word, and instruction. 

8. List all the interrupt signals available in 8085 microprocessor. 

9. List the sequence of events that occur when the 8085 MPU reads from memory. 

10. Explain the memory address range of 𝟏𝐊 (𝟏𝟎𝟐𝟒 × 𝟖) memory chip using 3-to-8 
decoder and explain the changes in the addresses if the hardware of the 𝐂𝐒തതതത line is 
modiϐied. 

11. Summarize the requirements of a memory chip and match the requirements with 
the microprocessor bus concepts. 

12. Draw and explain the timing diagram for opcode fetch operation. 

13. What are the distinct types of addressing modes available in 8085? Discuss them 
with example. 

14. Specify the control signal and the direction of the data ϐlow on the data bus in a 
memory-write operation. 

15. What is an assembler? What are low- and high-level languages? 

16. Write and explain four machine control instructions in 8085. 

17. Write an assembly language program in 8085 to add two 16-bit numbers. 

18. Write and explain about the rotate instructions in 8085 microprocessor. Give 
suitable examples. 

19. What is the function of program counter and stack pointer registers? 

20. What are the various types of increment instructions in 8085, like INR B, INR M, INX 
H. 

21. Differentiate between memory-mapped I/O and I/O-mapped I/O schemes of 
interfacing the peripherals with a microprocessor. 
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22. What are the steps in writing and executing an assembly language program? 

23. Discuss the various data formats like ASCII code, extended ASCII, BCD code, signed 
integer, and unsigned integers. 

24. Summarize the requirements of the memory chip and match the requirements with 
the microprocessor bus concepts.  

25. Interface a 2732 EPROM (4K bytes) memory chip with 8085μp using a 3-to-8 
decoder (74LS138 chip) and external NAND gates. 


