Course Curriculum for Degree Programme in Electronics & Communication Engineering

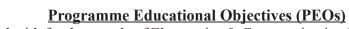
Department of Electronics & Communication Engineering

Sant Longowal Institute of Engineering & Technology Longowal-148106 Phone: 01672-253117 Fax: 01672-280057 Website: www.sliet.ac.in

VISION

The Department of Electronics & Communication Engineering shall strive to create engineering technocrats for addressing the global challenges in relevant areas to cater the ever-changing needs of society at National and International level.

MISSION


1. To ensure dissemination of knowledge through effective teaching and learning in Electronics and Communication Engineering.

2. To excel in Research and Development activities in emerging areas.

3. To promote industry-institute and institute-institute linkages for sustainable development of academic, research, training and placement activities.

4. To establish centre of excellence in thrust areas to nurture the spirit of innovation and creativity among faculty and students.

- 1. To be well acquainted with fundamentals of Electronics & Communication Engineering for leading a successful career in industry or as an entrepreneur or pursuing higher education.
- **2.** To inculcate rational approach towards constantly evolving technologies with ethical responsibilities.
- **3.** To foster techno-commercial skills for innovative solutions in Electronics & Communication Engineering or related areas.
- 4. To participate in life-long learning in the relevant domain for addressing global societal needs.

Programme Outcomes (POs)

After successful completion of B.E. (Electronics & Communication Engineering) program, the engineering graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

- **PSO1:** Ability to participate successfully in competitive examinations, career advancement and higher studies with professional ethics.
- **PSO2**: Ability to solve real world problems in Electronics and Communication Engineering using state of art techniques, along with analytical and managerial skills.

	Semester-I (Group-A)												
S.No	S.No Sub Code Subject Name L T P Hrs. Credits												
1	BSMA-401	Engineering Mathematics I	3	1	0	4	4						
2	BSPH-401	Applied Physics	3	1	0	4	4						
3	ESEE-401	Elements of Electrical Engineering	2	1	0	3	3						
4	ESCS-401	Elements of Computer Engineering	2	0	0	2	2						
5	ESEC-401	Elements of Electronics Engineering	2	0	0	2	2						
6	BSPH-402	Applied Physics Lab	0	0	2	2	1						
7	ESEE-402	Elements of Electrical Engineering Lab	0	0	2	2	1						
8	ESCS-402	Elements of Computer Engineering Lab	0	0	4	4	2						
9	ESEC-402	Elements of Electronics Engineering Lab	0	0	2	2	1						
		Total	12	3	10	25	20						
	1	Semester-II A (C	Group-A)		1								
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits						
1	BSMA-402	Engineering Mathematics II	3	1	0	4	4						
2	BSCH-401	Applied Chemistry	3	1	0	4	4						
3	ESME-401	Elements of Mechanical Engineering	2	1	0	3	3						
4	ESME-402	Workshop Technology and Practice	1	0	0	1	1						
5	HSMC-401	English Communication and Soft Skills	1	0	0	1	1						
6	BSCH-402	Applied Chemistry Lab	0	0	2	2	1						
7	ESME-403	Elements of Mechanical Engineering Lab	0	0	2	2	1						
8	ESME-404	Engineering Drawing	0	0	4	4	2						
9	ESME-405	Workshop Technology and Practice Lab	0	0	4	4	2						
10	HSMC-402	English Communication and Soft Skills Lab	0	0	2	2	1						
11	MCCH-401	Environmental Studies	3	0	0	3	0						
		Total	13	3	14	30	20						
		Semester-I	I-B										
	TPIN-421	Practical Training During Summer Vacations (In-house) 02 weeks	0	0	40	40	1 (S/US)						
	TPIN-422	Technical Competency	0	0	40	40	1 (S/US)						

B.E. (Electronics and Communication Engineering)

		Semest	er-III				
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	BSMA-501	Numerical and Statistical Methods	3	0	0	3	3
2	PCEC-511	Network Analysis & Synthesis	2	1	0	3	3
3	PCEC-512	Digital System Design	2	1	0	3	3
4	PCEC-513	Signals & Systems	2	1	0	3	3
5	PCEC-514	Electronic Devices & Circuits	3	0	0	3	3
6	BSBL-501	Biology for Engineers	2	0	0	2	2
7	BSMA-502	Numerical and Statistical Methods Lab	0	0	2	2	1
8	PCEC-515	Digital System Design Lab	0	0	4	4	2
		Total	14	03	06	23	20
		Semeste	r-IV-A				
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	ESME-501	Engineering Mechanics	3	1	0	4	4
2	PCEC-521	Analog Communication	3	0	0	3	3
3	PCEC-522	Analog Electronic Circuits	2	1	0	3	3
4	PCEC-523	Microprocessor & Microcontroller	3	0	0	3	3
5	HSMC-501	Principles of Management	3	0	0	3	3
6	PCEC-524	Analog Electronic Circuits Lab	0	0	2	2	1
7	PCEC-525	Microprocessor & Microcontroller Lab	0	0	4	4	2
8	PCEC-526	MATLAB Programming Lab	0	0	2	2	1
9	MCMH - 501	Constitution of India	3	0	0	3	0
		Total	17	02	8	27	20
		Semester-I	V-B				
	TPID-521	Industrial Training 02 weeks	0	0	40	40	1 (S/US)
	EAA-521+	Fractional credit course/Extra Academic Activity +GROUP A/B/C	0	0	40	40	1 (S/US)
	~	Semester-		I	_		
S.No	Sub Code	Subject Name	L2	T	P	Hrs.	Credits
1	PCEC-611	Digital Communication	3	0	0	3	3
2	PCEC-612	EMF & Transmission Lines	3	0	0	3	3
3	OEXX-611	Open Elective-1	3	0	0	3	3
4	OEXX-612	Open Elective-2	3	0	0	3	3
5	PEEC-611	Professional Elective-1	3	0	0	3	3

6	HSMC-601	Technical Communication	2	0	0	2	2
7	PCEC-613	Analog & Digital Communication Lab	0	0	4	4	2
8	HSMC-602	Technical Communication Lab	0	0	2	2	1
		Total	17	0	6	23	20
9*	HDEC-611	Hon's Subject-1					4
10*	HDEC-612	Hon's Subject-2					4

		Semester-	VB				
	EAA-611+	Fractional credit course/Extra Academic Activity +GROUP A/B/C	0	0	40	40	1 (S/US)
	1						
		Semeste	er-VI-A				
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PCEC-621	Linear Integrated Circuits	2	1	0	3	3
2	PCEC-622	Fiber Optics Communication	3	0	0	3	3
3	OEXX-621	Open Elective-3	3	0	0	3	3
4	OEXX-622	Open Elective-4	3	0	0	3	3
5	PEEC-621	Professional Elective-2	3	0	0	3	3
6	HSMC-603	Engineering Economics and Entrepreneurship	3	0	0	3	3
7	PCEC-623	Linear Integrated Circuits Lab	0	0	2	2	1
8	PCEC-624	Fiber Optics Comm. Lab	0	0	2	2	1
		Total	17	1	4	22	20
9*	HDEC-621	Hon's Subject-3					4
	•						
		Semester-V	/ I-B				
	TPID-621	Industrial Training 04 weeks	0	0	40	40	2(S/US)
	EAA-622+	Fractional credit course/Extra Academic Activity +GROUP A/B/C	0	0	40	40	1 (S/US)
		Semest	er-VII				
S.No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PCEC-711	Digital Signal Processing	3	0	0	3	3
2	PCEC-712	Antenna and Wave Propagation	3	0	0	3	3
3	PEEC-711	Professional Elective-3	3	0	0	3	3
4	PEEC-712	Professional Elective-4	3	0	0	3	3
5	OEXX-711	Open Elective-5	3	0	0	3	3
6	PCEC-713	Digital Signal Processing Lab	0	0	2	2	1
7	PCEC-714	Antenna and Microwave Lab	0	0	4	4	2
8	PREC-711	Project Stage I and Seminar	0	0	4	4	2
		Total	15	0	10	25	20
9*	HDEC-711	Hon's Subject-4					4

		Semes	ster-	VIII				
S.No	Sub Code	Subject Name		L	Т	Р	Hrs.	Credits
1	PEEC-721	Professional Elective-5		3	0	0	3	3
2	PEEC-722	Professional Elective-6		3	0	0	3	3
3	PREC-721	Project Stage II		0	0	12	12	6
		Tota	1	6	0	12	18	12
4*	PHEC-721	Hon's Project		0	0	08	08	4
		OR						
S.No	Sub Code	Subject Name		L	Т	Р	Hrs.	Credits
1	INID-721	Internship in Industry		0	0	40	40	6
2	PREC-721	Project Stage II		0	0	12	12	6
		То	tal	0	0	52	52	12
3*	PHEC-721	Hon's Project		0	0	08	08	4
	<u> </u>							I

*For honour degree only

	Credit Structure of Undergradu	uate Eng	ineering	Program	n	
S.No	Category	L	Т	Р	Hrs.	Credits
1	Humanities and Social Sciences including Management courses	9	0	4	13	11
2	Basic Science courses	17	4	6	27	24
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc.	12	3	18	33	24
4	Professional core courses	35	5	26	65	52
5	Professional Elective courses relevant to chosen specialization/branch	12	0	0	12	12
6	Open subjects – Electives from other technical and /or emerging subjects	15	0	0	15	15
7	Project work	0	0	12	12	6
8	Seminar/Internship/ Industrial training	0	0	204	204	13
9	Any others [Mandatory Courses and Fractional Credit Courses]	6	0	120	126	3
					Total	160

List of Professional Electives

		Professional Elective-I							
S.No.	Sub Code	Subject Name							
1	PEEC-611A	Pulse and Digital Switching Circuits							
2	PEEC-611B	MEMS							
3	PEEC-611C	Information Theory & Coding							
		Professional Elective-II							
S.No.	Sub Code	Subject Name							
1	PEEC-621A	Control System Engineering							
2	PEEC-621B	Telecommunication Switching Systems & Networks							
3	PEEC-621C	MOS Device Physics & Modelling							
Professional Elective-III									
S.No.	Sub Code	Subject Name							
1	PEEC-711A	Microelectronics							
	2PEEC-711BOptoelectronics Devices & Circuits3PEEC-711CComputer Communication & Networks								
3	PEEC-711C								
		Professional Elective-IV							
S.No.	Sub Code	Subject Name							
1	PEEC-712A	Microwave & Radar Engineering							
2	PEEC-712B	Computer Architecture & Organization							
3	PEEC-712C	Industrial Electronics							
		Professional Elective-V							
S.No.	Sub Code	Subject Name							
1	PEEC-721A	Wireless Sensor Networks							
2	PEEC-721B	Satellite Communication							
3	PEEC-721C	VLSI Circuits							
		Professional Elective-VI							
S.No.	Sub Code	Subject Name							
1	PEEC-722A	Wireless Communication							
2	PEEC-722B	Electronic Measurement & Instrumentation							
3	PEEC-722C	Neural Networks & Fuzzy Logic							

List of Open Electives

		Open Elective-I						
S.No.	Sub Code	Subject Name						
1	OEEC-611A	Linear Integrated Circuits						
2	OEEC-611B	Digital Electronics						
3	OEEC-611C	Electronic Measurement & Instrumentation						
		Open Elective-II						
S.No.	Sub Code	Subject Name						
1	OEEC-612A	Principle of Communication Engineering						
2	OEEC-612B	Optical Electronics						
3	OEEC-612C	MATLAB Programming						
		Open Elective-III						
S.No.	Sub Code	Subject Name						
1	OEEC-621A	Microprocessor and Applications						
2	OEEC-621B	VLSI Technology						
3	OEEC-621C	Nano Technology						
		Open Elective-IV						
S.No.	Sub Code	Subject Name						
1	OEEC-622A	Biomedical Electronics						
2	OEEC-622B	Control System Engineering						
3	OEEC-622C	Electronic System Design						
		Open Elective-V						
S.No.	Sub Code	Subject Name						
1	OEEC-711A	Digital Systems						
2	OEEC-711B	Microcontroller and Embedded Systems						
3	OEEC-711C	Wireless Communication						

								401						
				F	Elemen		ESEC- lectroi	401 nics En	gineer	ing				
			L			Т			0	P			Credi	ts
		G •	2			1				0			2	
		Session											<u>50</u>	
0		End S											50	
<u>Cours</u> Objec		semico transis	onducto tors an s. The o	or devi d oper course	ces viz ational also fo	z. diod ampli cuses c	es, bip fiers to on knov	olar ju devel	nction op the	tion an transis ability number	stors, j to des	unction ign bas	n field sic elec	effect etronic
Course Outcomes1. Design simple combinational and sequential logic circuits. 2. Characterize semiconductors, diodes and transistors. 3. Apply the basics of diode and transistor to analyse the operation of electronic devices.4. Design electronic circuits such as rectifiers, filters, voltage regulators, transistor amplifiers and operational amplifiers.														
Mapping of Course Outcomes with Program Outcomes														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1 3 3 1 1 3 1 1 0 0 2 1 2 2														
CO2 CO3	3	3	<u>3</u> 0	3 0	3 0	2 0	1 0	1	0	0	3	2 0	3	3 2
CO4	$\frac{3}{3}$	3	3	2	1	3	0	1	0	0	0	0	3	$\frac{2}{2}$
						Unit-	I		-		-		8 hi	`S
conver Logic XOR, 2 of simp	rsions, gates XNOF ple Bo	tem and Gray co and fli gates, olean eo d opera	ode, Ex p flops De-Mo quation	cess-3 : Defin organ's susing	code. nitions, theorem univer	symbo ms, rea rsal gat	ols and lization es, intr	truth t of bas	able of ic gate on to K	f NOT, s using	OR, A univer	ND, N sal gate	IAND, es; reali	NOR, zation
		1				Unit-							8 hi	*S
type, application filters,	n-type ations- L- sec	etor dev e, p-n j - half wa etion filt es and a	unctio ave, ful ers, π-	n theo l wave sectior	ry and and br filters	l diode idge ree , comp	es, its ctifier o arison	V-I cl circuits of filter	haracte , filter s, clipp	eristic, circuits pers and	equiva s: induc	alent r ctor filt	nodel, ers, cap	diode bacitor
						<u>Unit-</u>	III						8 hi	°S
operati	ing po	Bipola int selec MOSFE	ction, C	B, CE,	and Co	Cconfi	guratic							
						<u>Unit-</u>	IV						8 hi	rs.
Amp, basic	IC741 applic	l ampli pin con cations: ion amp	nfigura adder	ition, C)p-Am	p in di	fferent	modes	: inver	ting ar	nd non-	inverti	ng am	plifier,

RECO	MMENDED BOOKS	
Title	Author	Publisher
1. Electronic Devices & Circuits	David A. Bell	Oxford University Press, 5 th Edition 2010
2. Electronic Devices & Circuits	J. Millman & Halkias	McGraw Hill Education 3 rd Edition 2010
3. Electronic Devices & Circuit Theory	Robert L. Boylsted, Louis Nashelsky	Pearson Education
4. Digital Systems: Principles and Applications	Ronald J. Tocci	Pearson Education

3

3

2

2

	ESEC-402 Elements of Electronics Engineering Lab													
	L T P Credits													ts
0 0 2													1	
<u>Cours</u> Objec		The aim of this lab is to give practical exposure to students by analyzing V-I characteristics of different semiconductor electronics devices and design of basic electronic circuits. This lab also includes verification and testing of truth table of various logic gates and flip flops.												
Cours Outco		2. Desi	ign prac yze var	ctical c ious m	ircuits odes of	using so transis	emicon tors in	ductor differe	diodes nt conf		and flip ons.	o flops.		
	ł		Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	0	3	3	2	2	0	1	3	2	1	2	1	3
CO2	3	3	3	3	2	2	0	1	3	2	1	0	1	2

0

0

1

3

3

2

2

1

2

2

3 List of Experiments:

3

3

3

CO3

CO4

1. Verification of the truth tables of basic gates, e.g., 7400, 7402, 7404, 7408, 7432, 7486.

2

2

2. Design all other gates using NAND and NOR gates.

3

3

3. Design S-R flip-flop using NOR/NAND gates.

0

3

- 4. Verify the truth table of J-K flip-flop (7476), D flip-flop (7474) and T flip-flop.
- 5. To observe and analyze V-I characteristics of PN junction diode.
- 6. To observe and analyze V-I characteristics of Zener diode.
- 7. Design and analysis of half wave rectifier with capacitor filter.
- 8. Design and analysis of center tap full wave rectifier with capacitor filter.

2

2

- 9. Design and analysis of bridge type full wave rectifier with capacitor filter.
- 10. Design and analysis of Zener as a voltage regulator.
- 11. To observe V-I characteristic of PNP and NPN transistor in common base configuration.
- 12. Design and analysis of Op-Amp as an inverting amplifier & non-inverting amplifier.
- 13. Design and analysis of Op-Amp as an integrator & differentiator.
- 14. To observe V-I characteristic of JFET.
- 15. To observe V-I characteristic of MOSFET.

	TPIN-421 Practical Training (In-house)														
			L			Т				Р			Credit	S	
		0			0				40			1 (S/US)			
<u>Cours</u> Objec		experie and Co	-house training is imparted with an objective to familiarize and provide "hands on" perience on the requisite tools, components and instruments to be used in Electronics d Communication Engineering. The students will be able to present their work in ritten, oral or formal presentation formats.												
Course OutcomesAfter successful completion of industrial training, the students should be able to 1. understand the use of various tools, electronic components and measurin instruments.2. carry out work successfully involving individuals and teamwork skills. 3. correlate the theoretical concepts with the practical aspects. 4. express their work effectively through verbal and written communication.											suring				
			Map	ping of	Cours	se Outo	comes	with P		n Outc					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2	2	2	2	3	3	3	1	3	3	1	
CO2	3	2	3	3	3	3	3	2	2	3	1	3	3	1	
CO3	3	3	2	3	2	2	2	2	1	3	1	3	3	3	
CO4	1	1	1	1	1	1	1	1	3	3	1	3	1	3	

						P	CEC -	511						
	Network Analysis and Synthesis													
			L			Т				Р			Credi	ts
		~ •	2			1				0			3	
		Session											<u>50</u>	
		End S	emeste	er Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		Netwo electro provid networ	onics ar e platfo	nd elect	trical e	nginee	ring ar	e based	l. The 1		ojective	e of thi	s cours	e is to
Course 1. Apply basic circuital laws and simplify the network using reduction techniques. Outcomes 2. Analyse circuits using Kirchhoff's laws and network simplification theorems. 3. Evaluate and compute transient response, steady state response, network functions. 4. Calculate two port network parameters. 5. Synthesize networks using Foster and Cauer forms.														
				. 0						n Outc				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12	PSO1	<u> </u>
CO1	3	2	1	2	3	2	0	1	1	0	0	2	3	2
CO2	2	2	2	2	2	2	0	1	1	0	1	2	3	1
CO3	1 3	3	1	3	3	2	0	1	2	0	1	$\frac{2}{2}$	3	2
CO4 CO5	$\frac{3}{3}$	3	2	3	2 2	22	0	1	1	0	0	2	3	2
05	3	1	2	3	<u>_</u>	Unit-		1	1	0	U	<u> </u>	12	-
charac transfo Netwo theore	eteristi ormation ork the m, Mi	cuit an cs, idea on, Kirc corems llman's legen's t	l volta hhoff's s: Su theore	ge and s Laws perpos m, max	current nodal ition the cimum	nt sour and me heorem power	ce, end sh anal , recip transfe	ergy co lysis. procity er theor	theore theore	s in two em, Th	o term evenin	inal ele 's theo	ements rem, N	-Delta Norton
	, -	-0		(-				12 6	
						<u>Unit-</u>	<u>II</u>						12 h	irs
such a series networ Reson resona	and p and p rks, du ance a nce, c	and mag	admitt connec gnetica of sel	ance, letions of ally cou	nybrid, of two upled c tance	transn -port n circuits and m	etwork Intro Intro	, etc. ro s, con oductio nducta	elation ditions n to res nce, co	ship and for sy sonance oupling	nong d /mmeti e, series ; coeffi	ifferent rical ar s resona cient,	t paran nd reci ance, p	neters, procal arallel
couple	cu circi	uits, sim	ipie ser	ies and	paralle			conver	mon, 10	leai trai	iisiorm		101	
consta sinuso and tw of netv	nts,co idal ar o-port vork fu	and ste ncept of ad drivir networ anctions eview of	f phaso 1g sour ks, imp s, restri	rs, imp ces, ste bedance ctions o	edance ady sta e functi on loca	e and a te analy on and tions of	sients dmittar ysis usi admitt f poles	nce, ar ng pha ance fu and zer	nalysis sor, net inction ros in d	of RL, twork f , transfe riving p	RC an unction er functor point fu	d RLC 1: one-p tion, po inctions	circuit ort net les and s and tr	time s with works l zeros

	Unit-IV 12 hrs											
Network synthesis : Hurwitz polynomials, positive real functions, synthesis of dissipative networks, Foster and Cauer realization (I, II forms) for LC, RL and RC networks. Graph theory: Concept of network graph, tree, tree branches and links, tie-set and cut-set matrices, introduction to SPICE simulators and MATLAB for solving circuit problems.												
RECOMMENDED BOOKS												
Title	Author	Pu	ıblisher									
1. Fundamentals of Electric Circuits	Charles K. Alexander and Matthew N.O. Sadiku	Tata McGra	w Hill									
2. Engineering Circuit Analysis	William H. Hayt and Jack Kemmerly	Tata McGra	w Hill									
3. Network Analysis	Van Valkenburg	Prentice Ha	ll of India									
4. Circuit and Networks: Analysis and Synthesis	A.Sudhakar and S.Palli	Tata McGra	w Hill									
5. Networks and Systems	D. Roy Choudhary	New Age In	ternational									

							PCEC-: l Syster	512 m Desig	7n					
			L			T	1 8 9 8 4 4 1			Р			Credi	ts
			2			1				0			3	
		Sessio											50	
		End S	emeste	r Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		used i memor	n digi ries, ar	tal sys nd moc	tem. T lern lo	The con gic dev	urse d vices s	eals w uch as	ith sec field	sign an quentia prograi gh case	l circu nmabl	its, rar e logic	ndom gates.	access State
			ns using											1
Course 1. Analyse and design sequential and combinational systems. Outcomes 2. Assess the performance of a given digital circuit with Mealy and Moore configurations. 3. Perform static timing analysis of the digital circuits/systems. 4. Design the digital system using VHDL and Compare the performance of a given digital circuits/systems with respect to their speed, number of IC's.														
			Map	ping of	Cours	se Outo	comes	with P	rograr	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	2	1	1	1	1	0	2	2	3	2
CO2	3	3	2	1	1	1	2	1	1	0	3	2	3	2
CO3	3	3	3	3	2	2	2	1	1	0	3	2	3	3
CO4	3	3	3	1	3	2	2	1	1	0	3	2	2	3
			-			Unit-	I		•				12	hrs
using Subtra DEMU	K-maj ctor, C JX, Ir	gital S o, logic Code co npleme al modu	gates onversion ntation	, Coml on, Ma s using	oinatio gnitud g ROM	nal cire e comp I, PLA systems	cuits: barator A, PAL	Ripple s, Appl	carry lication	adder, ns of E	BCD, ncoder	High s, Deco	speed oders, 1 tions.	adder, MUX, Using
						<u>Unit-</u>							16 h	irs
Shift I Timing ICs fo	Registe g issue r their	Circuits ers, Co s, Setup applica us seque	unters and ho ations,	 – Ring old time Finite 	g, Johr es, oper State 1	nson, E rating f Machin)esign requen les – N	of syn cy limi 100re a	chrono tations and Me	ous and , Static ealy, D	l Asyn Timing	chrono ^s gAnaly	us Cou sis, Sta	indard
						<u>Unit-</u>	III						12 h	irs
object digital	Introduction to VHDL : Overview of digital system design with VHDL, basic language elements, data objects, classes and data types, operators, overloading, logical operators, VHDL representation of digital design entity and architectural declarations, introduction to behavioural, dataflow and structural models, applications of VHDL to design.													
						<u>Unit-</u>	IV						8 hr	'S
Digital logic families : Characteristics of digital circuits: fan in, fan-out, power dissipation, propagation delay, noise margin, transistor-transistor logic (TTL), types of TTL gates, tristate logic & its applications, emitter coupled logic (ECL), CMOS, comparison of characteristics of TTL, ECL, and CMOS, interfacing of logic families. Semiconductor memories : Memory organization, ROM, PROM, EPROM, EEPROM, RAM, Static RAM, Dynamic RAM cell, memory cell, reading & writing operation in RAM.														

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. An Engineering Approach to Digital Design	Fletcher William, I	3 rd Indian reprint, PHI, (1994).								
2. Digital Design	Morris Mano M	3 rd Edition, Pearson Education (2002).								
3. VHDL-Analysis and Modeling of Digital Systems	Navabi Z	McGraw Hill.								
4. Fundamentals of Logic Design	Charles H. Roth Jr	4 th Edition, Jaico Publishers (2002).								
5. VHDL for Programmable Logic	Skahill Kevin	1 st Indian Reprint, Pearson Education (2004).								
6. Verilog HDL: A Guide to Digital Design and Synthesis	Samir Palnitkar	2 nd Edition, Prentice Hall PTR								

PCEC-513 Signals & Systems														
			L			T				Р			Credi	ts
			2			1				0			3	
		Session			•								<u>50</u>	
Cours		End So											50	
Course ObjectivesThis course aims to provide detailed description of continuous and discrete-time signals and systems, their properties, representations, and methods that are necessary for the analysis of continuous and discrete-time signals and systems. Knowledge of time- 														
Course 1. Identify and classify different types of signals and systems that are commonly used in engineering. Outcomes 2. Differentiate between the properties of continuous-time and discrete-time systems and represent CT and DT systems in the frequency domain using Fourier analysis. 3. Apply transform techniques to analyse continuous-time and discrete-time signals and systems. 4. Understand the basic concepts of probability and random variables.														
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	1	1	1	1	0	0	2	3	3
CO2	3	2	2	2	3	1	1	1	1	0	0	2	3	3
CO3	3	2	2	2	3	1	1	1	1	0	0	2	3	2
CO4	3	3	2	2	2	1	1	1	1	0	0	2	3	2
						Unit-	I						12	hrs
systen	ns, proj	n: Defin perties c : Contir	ofsyste	ms.		-	ne LTI s					tion of	f signa	
discret Fourie of cor	te-time er trai ntinuou	ies rep e period nsform: us-time volution	ic signa Contin Fourie	als, pro nuous-	perties time Fo	of cont ourier t discret	inuous ransfor e-time	time a m of p	nd disc eriodic	crete-til c and ap	ne Fou periodi	rier ser c signa	ies. ls, proj nd ape	perties
						<u>Unit-</u>	III						12 h	irs
Laplace transform (LT) : One-sided Laplace transform (LT) of common signals, important theorems, and properties of LT, Inverse LT, solutions of differential equations using LT, bilateral LT, region of convergence (ROC). Z-Transform: Z-Transform and its properties, Region of convergence and its properties, inverse z transform, transfer function, causality and stability, Unilateral Z-Transforms.														
					-	Unit-							12 h	irs
probal Raylei randoi	bility d igh (Pl m varia	nal theo lensity f DF), me ables. rocesse	unction an, va	n (PDF riance), avera and PE	age val DF of th	ue and ne sum	varian of ran	ce of ra dom v	andom ariable	variabl s, corre	es, Gau elation	issian (betwee	(PDF) en two

Random processes: Introduction, classification, correlation, and auto correlation, stationary andergodic process.

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Signals and Systems	Alan V. Oppenheim, Alan S. Willsky	Pearson Education Limited, (2013)									
2. Signal Processing and Linear Systems	B P Lathi	Oxford University Press, (2003)									
3. Signals and Systems	T. Rawat	Oxford University Press, (2010)									
4. Signals and Systems	Simon Haykin, Barry Van Veen	John Wiley & Sons, (2007)									

PCEC-514														
	Electronic Devices & Circuits													
			L			<u>T</u>				P			Credit	ts
		Sessio	3 nol Ma	rlze		1				0			<u>3</u> 50	
			emeste		ninatio	on Mar	·ks						<u> </u>	
Cours	se							arize w	vith ser	nicond	uctors	devices		itative
Objec		analys	is of Pl the the p	N junct	tion die	ode and	l introc	luction	to spe	cial pur sis of th	rpose d	liodes.	To stuc	dy and
 <u>Course</u> <u>Outcomes</u> Acquire knowledge about semiconductor physics for intrinsic and extrinsic materials and their properties. Understand basics of various semiconductor diodes, BJTs and their qualitative and quantitative analyses. Analyze the performance of FETs based on their operation and working. Understand and analyze special purpose diodes and their applications in modern circuits. 										ve and				
										n Outc				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11			PSO2
CO1	3	3	1	1	1	1	1	1	1	0	0	2	3	2
CO2	3	3	2	3	1	1	2	1	1	0	0	2	3	2
CO3	3	3	2	3	1	1	2	1	1	0	0	2	3	2
CO4	3	3	1	2	1	1 Unit-	2	1	1	0	0	2	3	2 hrs
concer	ntratio	etor phy ns, Fern and mo	ni level	, electr	on and	hole c e, Poiss	oncent son's an	ration a	at equil	ibrium	, carrie	r drift a	nd diff	fusion,
				D 3 4 4		<u>Unit-</u>							12 h	
level, diode, diode charac	electri diode model teristic	nction t c field, equations, deple cs. pose de	space on, vol tion an	charge t- amp d diffu	at jun ere ch sion ca	ction, o aracter apacitat	qualitat istics, nce, jun	tive the temper nction	eory of rature of breakd	f P-N ji depend own m	unctior ence o echanis	n, P-N f V-I c sm, dio	junctio haracte de swi photo	on as a eristic, tching diode,
						<u>Unit-</u>	III						12 h	rs
compo config point,	Bipolar junction transistor (BJT) : Device structure and physical operation, transistor current components, modes of operation, common emitter, common base and common collector configurations, input, output characteristics, BJT specifications, DC and AC load line, DC operating point, DC Biasing circuits-fixed bias, emitter bias, voltage divider bias, voltage feedback, Bias stability, Stabilization against variation in Ico, VBE and β , Bias compensation.													
						<u>Unit-</u>	IV						12 h	Irs
Metal capaci voltag	Junction field effect transistor : Basic n channel and p channel JFET operation, its V-I characteristics. Metal oxide semiconductor field effect transistor : MOS Capacitor. Energy band diagram for MOS capacitor with p-type and n-type substrate, Space charge width, work function difference, flat band voltage, threshold voltage, Differential charge distribution, C-V characteristics for MOS capacitor, MOSFET structure and its classification and V-I characteristics of MOSFET.													

RECOMMENDED BOOKS												
Title	Author	Publisher										
1. Semiconductor Physics and Devices	Donald A. Neamen	Tata McGraw-Hill										
2. Electronic Devices & Circuits	J. Millman & C Halkias	McGraw Hill Education 3 rd Edition 2010										
3. Microelectronic Circuits	Adel S. Sedra, Kenneth C. Smith	Oxford Press 6 th Edition 2013										
4. Solid State Electronics Devices	Ben G Streetman & Sanjay Banerjee	PHI 6 th edition, 2013										

	PCEC-515 Digital System Design Lab													
			L			Т				Р			Credit	ts
		0 0 4 2												
<u>Course</u> Object	tives	The air designi and pro	ing and	l testing	g of co	mbinat	0		0					
Course Outco	mes	 Ana Des Des Des 	ign and ign and	l analyz l analyz	ze com ze sequ	binatio iential c	nal dig digital o	ital circ	cuits.	lean fur	nctions			
			Map	oing of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													

		102	105	104	105	100	107	100	109		IUII	1012	1301	1 302
CO1	2	3	3	3	2	1	0	1	3	2	1	2	2	3
CO2	2	3	3	3	2	1	2	1	3	2	1	2	2	3
CO3	2	3	3	3	2	3	0	1	3	2	1	2	2	3
CO4	2	1	3	3	2	3	2	1	3	2	1	2	2	3

List of Experiments:

PART-A

- 1. Introduction to Digital Electronics lab-nomenclature of digital ICs, specifications, study of the datasheet, concept of V_{cc} and ground.
- 2. To verify De-Morgan's Theorem and Implementation of the given Boolean function using logic gates in both SOP and POS forms.
- 3. To realize half/full adder and half/full subtractor using basic/universal gates.
- 4. To realize parallel adder/subtractor using IC 7483.
- 5. To verify BCD to excess-3 code conversion using NAND gates.
- 6. To convert Gray code to binary number and binary number to Gray code.
- 7. Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates. To implement the arithmetic circuits half adder, half subtractor, full adder and full subtractor using multiplexers.
- 8. To design and verify the operation of magnitude comparator.
- **9.** Verification of state tables of RS, J-K, T and D Flip-Flops using NAND Gates with timing diagrams.

*Experimentation work to be supported by simulated results

PART-B

- 1. To design and implement a circuit for a 2 bit parallel adder using NAND gates only.
- 2. To design and implement the 4-bit synchronous counter.
- 3. To design and implement the 4-bit asynchronous counter.
- 4. VHDL code for Half/Full adder.
- 5. VHDL behavioral description of 4-bit ALU. The circuit performs two arithmetic and two logical operations that are selected by 2-bit input. The four operations are ADD, SUB, AND and OR.
- 6. VHDL program to count number of one's in 10-bit binary number.
- 7. VHDL code for 8:3 encoder.
- 8. VHDL code for positive edge triggered T-flip flop.
- 9. VHDL code for 8-bit SISO shift register.

*Experimentation work to be supported by simulated results

PCEC-521 Analog Communication														
			L			T				Р			Credit	ts
			3			1				0			3	
		Session											50	
		End S	emeste	r Exar	ninatio	on Mar	ks						50	
<u>Cours</u> Objec		The co commu FM tran commu	unications in the second se	on syst	ems, u l recept	ndersta	and va	rious a	nalog		unicatio	on tech	niques	, AM,
-	 Course Outcomes Gain knowledge about the fundamental concepts of various analog communication systems. Design the AM, SSB, FM and PM transmission and reception circuits. Analyze the performance of amplitude and frequency modulated systems and design of PAM, PWM and PPM systems. Understand practical implementation issues and evaluate fundamental communication system parameters including noise. 													
				-					-	n Outc				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12		PSO2
CO1	3	2	1	1	2	2	2	1	0	0	2	2	3	2
CO2	3	3	3	3	2	2	2	1	0	0	2	2	3	3
CO3	3	3	1	1	2	2	2	1	0	0	0	2	3	3
CO4	3	3	3	3	2	2	2	1	0	0	0	2	3	2
						<u>Unit-</u>	I						12	hrs
modul wave, spectra	ation, conce a of FN	ulation frequen pts of an A signal acy mod	cy spec ngle m s, narro	etrum o odulati ow ban	fAM v on, the d FM, v	vave, A cory of wide ba	M pow freque and FM	ver calc ncy mo l, phase	ulation odulation	is, AM on, mat	modula themat	tion wi	ith a co alysis c	mplex of FM,
						<u>Unit-</u>	II						12 h	irs
AM Transmission/AM Reception: Introduction, Generation of Amplitude Modulation, Basic Principles of AM Generation; Square law Diode Modulation, Vander Bijl Modulation, Suppressed Carrier AM Generation, Ring Modulator, Balanced Modulator. Tuned Radio Frequency (TRF) Receiver, Basic Elements of AM Super-heterodyne receiver; RF Amplifiers Characteristics, Sensitivity, Selectivity, Image Frequency Rejection, Mixers Tracking and Alignment, Local Oscillator, IF Amplifier, AM Detectors; Envelope or Diode Detector, AGC, AM Receiver using Transistors Communication Receiver. <u>Unit-III</u> 12 hrs														
		• • ~-			~			r.1		.1 1	T 1'			
The A Demo	FM Transmission/FM Reception: Generation of FM by Direct Methods. Indirect Generation of FM; The Armstrong Method, FM Stereo Transmission. FM Receiver Direct Methods of Frequency Demodulation; Slope Detector, Travis Detector, Foster Seely or Phase Discriminator, Indirect methods of FM Demodulation; FM Detector using PLL and Stereo FM Multiplex Reception.													

UG Syllabus for Degree Programme (applicable to 2018 batch onwards)

	Unit-IV		12 hrs								
SSB Transmission/SSB Reception: Advantages of SSB transmission, Generation of SSB Independent Side-Band Systems (ISB), Vestigial Side-Band Modulation (VSB), SSB Product Demodulator, Balanced Modulator as SSB Demodulator, ISB/Suppressed Carrier receiver. Pulse Modulation Transmission and Reception: Introduction, Pulse Amplitude Modulation (PAM), PAM Modulator Circuit, Demodulation of PAM Signals, Pulse Time Modulation (PTM); Pulse Width Modulation (PWM), Pulse Position Modulation (PPM).											
RECOMMENDED BOOKS											
Title	Author	Pub	lisher								
1. Electronic Communication Systems	Kennedy, G.	Tata McGraw (2008) 4 th ed	-Hill								
2. Communication Systems	Haykin, S.	John Wiley & (2009) 4 th ed.	Sons								
3. Principles of Communication Systems Taub, H&Schilling John Wiley & Sons											
4. Electronic Communication Systems	Wayne Tomasi	Pearson Educ (2011), 5 th ed	ation								

	PCEC-522 Analog Electronic Circuits L T P Credits													
			2			1				0			3	
		End S	emeste	er Exar	ninatio	on Mar	ks						50	
<u>Cours</u> Objec		multis	tage a	mplifie	er by o		ig in o	differei	nt way	vs. To	study	,		iour of dback
Course 1. Analyze the low and high frequency response of BJT, MOSFET. Outcomes 2. Design transistor single stage, multistage amplifiers and tuned amplifiers. 3. Design multistage amplifiers and various coupling techniques. 4. Design and analyze feedback circuits and oscillators.														
Mapping of Course Outcomes with Program Outcomes														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1 3 3 2 1 2 2 1 0 0 2 2 3 2														
CO2	3	3	3	2	1	2	0	1	0	0	0	2	1	2
CO3 3 2 3 1 2 2 1 0 0 1 2 3 2											2			
CO4	3	3	2	2	1	2	1	1	0	0	1	2	3	2
						<u>Unit-</u>	I						12	hrs
	follo	e MOS wer and					mirro							d their
couple bandw cascod Trans amplif	ed amy vidth, ling, fo istor a fier, ga	amplifiers, cascode olded ca at high in-banc igh frec	frequ e amp scode, frequ lwidth	ency r lifiers- Darling encies produc	mespons MOS gton an : High ct, Mill	e of a casco nplifier freque ler's the	BJT de, BJ ency n eorem,	and F JT case nodel o MOSI	ET an code, of BJT	nplifier cascod	; cut-o e curro requen	off frec ent so	uencie urce, c	es and double of CE
						<u>Unit-</u>	III						12 h	irs
Feedback amplifiers : Properties of negative feedback, four basic feedback topologies, analysis of current-series, current-shunt, voltage-series and voltage-shunt feedback amplifiers. Oscillators - The oscillation criteria, Wien bridge, phase shift, LC tuned oscillators, crystal oscillators, astable multivibrator.														
						<u>Unit-</u>	IV						12 h	irs
class-H Tuned	Output stages and power amplifiers : Classification of output stages, analysis of class-A output stage, class-B output stage, class AB output stage, class C output stage, harmonic distortion. Tuned amplifiers : Basic principle, inductor losses, amplifiers with multiple tuned circuits, synchronous and stagger tuning, class C tuned amplifier.													

RECO	MMENDED BOOKS	
Title	Author	Publisher
1. Microelectronic Circuits	Adel S. Sedra, Kenneth C. Smith	Oxford Press 6 th Edition 2013
2. Integrated Electronics	Millman & Halkias	Tata McGraw -Hill Education
3. Electronics devices and circuit theory	Robert L Boylestad & Louis Nashelsky	Pearson Education

					Micro		PCEC- sor & 1		<u>control</u>	ler				
			L			Т				Р			Credi	ts
		<u> </u>	3			0				0			3	
		Session End S				Mar	Jaa						<u>50</u>	
<u> </u>					ninatio				1 (1	1	. 1.	C (1	50	
<u>Cours</u> Objec		microp technic the I/C	process ques. S	ors and tudents es to de	e course d micro s will t evelop	ocontro be able	ollers, i to inte	machin erface t	e lang he mic	uage pi roproc	rogram essor/n	ming &	& inter ontrolle	facin er wit
Cours Outco		 2. Und of an 3. Inter 4. Ana 	erstand chitect rpret th lyze the 3085 &	d the in ture and e detail e conce 8051.	ledge o nportan d pin co led stud ept of se	nce of n onfigura ly of pro erial co	nicro-p ation of ogrami mmun	f 8051. ming co ication	ors and oncepts and int	l micro s of 805 terfacir	-contro 1 micro ng the e	o-contr	oller.	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1	PSO
CO1	3	3	3	1	2	2	1	1	0	0	2	2	2	3
CO2	3	3	2	1	1	2	2	1	0	0	3	2	3	3
CO3	3	3	3	3	2	2	2	1	0	0	3	2	3	3
CO4	3	3	3	2	3	2	2	1	0	0	3	1	2	3
			5			- Unit-						-		hrs
Progr modes examp Interr Parall	ammi s, Timi bles, Co rupts: lel inp ory Ma	ut / outp ng usir ng diag ounter a 8085 int 9085 int 9085 int	ng 808 ram of nd Tim terrupts	5 micr the ins the Delay s, restan	roproc structio ys, Stac rt instru facing	essor: ns (a fe ek and S <u>Unit-</u> nctions, applic and S(Instruc ew exa Subrou <u>II</u> , additio cations OD pin	mples) tine, onal I/C s: I/O I	Asser	nbly la epts & p Interfa	nguage	e progra es. O Maj	ammin 12 h pped I/ Paralle	g wit ors O and el dat
						<u>Unit-</u>							12 h	
Introduction to 8051 microcontrollers & Programming using8051 microcontroller: Pin description and architecture of 8051 microcontroller, arithmetic, logic and single bit instructions, addressing modes. I/O instructions, memory read/write-only instructions, stack operations, conditional and un-conditional instructions, basic programming concepts.8051 interrupts, Timer/counter programming in the 8051.Comparison of Microprocessor and Microcontroller, micro controller and embedded processors.Unit-IV12 hrs														
		• -				<u>Unit-</u>	<u>IV</u>						12 h	irs
Interfacing with External Devices: Introduction to 8155/8156,8255 A programmable peripheral interface, 8253/8254 programmable interval timers, 8259 a programmable interrupt controller, 8251 USART. 8051 connection to RS 232, Serial communication programming, Interfacing of 8051 microcontroller-														

8051 connection to RS 232, Serial communication programming, Interfacing of 8051 microcontroller-LCD, ADC and DAC, Stepper motor.

RECO	OMMENDED BOOKS	
Title	Author	Publisher
1. Microprocessor Architecture- Programming & Applications with 8085/8080A	Ramesh S Gaonkar	5 th Edition, Penram International Publishing
2. Introduction of Microprocessors & Microcomputers	Ram B	4 th Edition, Dhanpat Rai Publisher (P) Ltd.
3. The 8051 Microcontroller and Embedded Systems	M.Mazidi, JG Maizidi	Pearson Education
4. An introduction to Intel family of Microprocessors	James L Antonakes	3 rd Edition, Pearson Education
5. The 8051 Microcontroller	Kenneth J. Ayala	Pearson Education

					Anal	F og Elec	PCEC- ctronic		uits La	b				
			L			Т				Р			Credit	ts
			0			0				2			1	
<u>Cours</u> Objec		on OF amplif	This lab includes the analysis of analog electronic circuits using hardware kits as well as on ORCAD spice simulator. It also includes the study of response of multistage amplifiers under various coupling techniques. Further in this lab student will observe the frequency response of various amplifiers.											
<u>Cours</u> Outco	_	1. Anal 2. Anal 3. Anal 4. Desi	lyze the lyze the	e freque e class A	ency re A, B an	sponse plifier	ofFET s and tu	ampli:	fier. Itage a	amplifi mplifie				
		Mapping of Course Outcomes with Program Outcomes												
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2												
CO1	3	2	3	2	3	2	1	1	3	2	1	2	2	1

List of Experiments:

CO2

CO3

CO4

Note: Experiments based upon hardware using hardware kits and rest using simulation with the help of simulation packages

1. To measure the h-parameters of CE configuration.

2. To determine the voltage gain of a two stage RC coupled amplifier.

3. To plot frequency response characteristics of Transformer coupled amplifier.

- 4. To plot frequency response characteristics of direct coupled amplifier.
- 5. To study the gain and frequency response of CS FET amplifier.
- 6. To plot frequency response of a tuned voltage amplifier and to calculate its resonant frequency.
- 7. To study the double ended tuned amplifier.
- 8. To study the class A power amplifier and find its efficiency.
- 9. To study the class B power amplifier and find its efficiency.
- 10. To study the cascode amplifier.
- 11. To study the concept of feedback in voltage amplifier.
- 12. To study the RC phase shift oscillator and measure its frequency of operation.
- 13. To study the LC oscillator and measure the frequency of operation.
- 14. To plot the frequency response of a Darlington amplifier. Calculate gain and bandwidth.

*Compare the results of each aim of experiment with ORCAD spice simulation.

- antin a															
					М	icronr	Focessor	PCEC- r & Mi		trolle	: Lah				
				L		<u>ici opr</u>	T				P	T		Credi	ts
		ŀ		0			0				4			2	
Co	urse		This lat		es nrog	rammin		fmicro	nrocess	orandi	ts interf	acing to	differe	 nt I/O d	evices
	jecti	- 1									additio				
	jeen	VCS									kit to va				
				232C, 81				1				1	1		
Co	urse		1. Per	form va	arious a	rithmeti	ic and so	orting of	peration	ns with t	the help	ofmicr	oproces	sor	
	tcon						8085 an			~	Р		- P		
	<u>tton</u>		3. Inte	erface v	vith var	ious pe	ripheral	device	s such a	as exter	nal keyl	board, p	orinter, 8	8253, p	ersonal
				computers using RS232C.											
			4. Imj	4. Implement serial communication and interface external devices with 8085 and 8051											
			Mapping of Course Outcomes with Program Outcomes												
		PO1													
CO		3	3 3 2 2 2 0 1 3 2 1 2 3 3												
CO		3	3	2	2	1	2	1	1	3	2	1	2	3	3
CO CO	_	<u>3</u> 3	3 3 3 2 2 1 1 3 2 1 2 3 3 3 2 3 2 2 1 1 3 2 1 2 3 3												
		-													
List	of Ey	sperii	nents:				1	PART-A							
1.	2's co	mnlin	nent of 8	-hit num	her		1		L						
			nent of 1												
			shift a bl			n one me	mory loo	cation to	another						
			ion by tw			it rotatio	n.								
			ftwo 16-				میں ما میں میں	frita an	anation						
			DC chip AC chip												
			n externa								n. Hence				
	a) g	genera	ate a puls	e train o	fspecifi							-			
			e as a: N												
0			a train o												
			even segr D line to					ecified d	luty evel	eatagi	ven fregi	iency			
10.	0.50 1	1000		Benerat	e a squai		-	PART-B		e ut u Bi	venneq	aeney.			
1.	Write	e a pro	gram to t	toggle al	l the bits	sofport	1 by send	ding to it	t the valu	ues 55H	andAA	H contin	uously.	Put a tin	ne delay
			each issu												
			5 by 10 us					dition.							
			gram to a gram to a				imbers.								
		-	gram to p				of two nu	mbers.							
			gram to p												
			program using 8051 to split a byte into two nibbles and show results.												
		1	a square wave that has a high portion of 1085 μ S and a low portion of 15 μ S. Assume XTAL = 11.0592 MHz												
		Fimer	1. ollowing	program											
						ity cycle	on bit 0	ofport 1							
		Create a square wave of 50% duty cycle on bit 0 of port 1. Create a square wave of 66% duty cycle on bit 3 of port 1.													
		ssuming XTAL =22 MHz, write a program to generate a pulse train of 2 seconds period on pin P2.4. Use Timer 1 in													
	mode	e1.													
			ounter for						e pulse t	o be cou	inted is f	ed to pin	3.4. XT/	AL=22	MHz.
			rcuit to in												
			rcuit to ir rcuit to ir												
	-		reuit to ir												

15. Design a circuit to interface keyboard with microcontroller.

					MA	F TLAB	PCEC- Progr		ıg Lab					
			L			Т				Р			Credit	ts
			0			0				2			1	
<u>Cours</u> Objec		The aim of this course is to introduce the students to the MATLAB programming language for numerical computations and its application in engineering and technology												
<u>Cours</u> Outco		 Per Eva 	form m aluate, a	athema malyze	tical mo and plo	deling tresults	in MAT	LAB.			grams in e in eng			
		Mapping of Course Outcomes with Program Outcomes												
	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO1	2	3 3 3 1 0 1 3 2 1 2 2 3												
CO2	2	3	3	3	3	1	2	1	3	2	1	3	2	3

2 List of Experiments:

2

3

3

3

3

3

3

3

3

3

CO3

CO4

1. Familiarizing with basic elements of MATLAB's desktop, MATLAB windows, MATLAB editor input-output, file types, general commands, variables, numbers, working with arrays of numbers and array arithmetic operations.

0

2

1

3

3

2

2

2

3

1

2

3

3

3

- 2. Write a MATLAB program to display a matrix. Also find its length, width, divergence, transpose and inverse.
- **3.** Write a MATLAB program to calculate matrix addition, multiplication, division and eigen value calculations.
- 4. To study basic 2-D plots, style options, labels, title, legend, and other text objects, axis control, modifying plots specialized 2-D plots, layout of multiple plots, mesh and surface plots, 3-D plots.
- 5. Write a script file to calculate addition, subtraction, multiplication, division, square, square root, cube and cube roots of integer numbers.
- 6. Familiarizing with control flow structures branching statements, loops and their operators.
- 7. Write a script file to find the largest of three numbers (use if-elseif-else).
- 8. Generate a 10-by-10 matrix A = [akl], where akl = sin(k)cos(l). (use for loop)
- 9. The number π is divided by 2. The resulting quotient is divided by 2 again. This process is continued till the current quotient is less than or equal to 0.01. Write a script file to find the largest quotient that is greater than 0.01? (use while).
- 10. Write a script file to generate 5 different magic squares.
- **11.** Fibonacci numbers are computed according to the following relation:
- with $F_0 = F_1 = 1$ **12.** $F_n = F_{n-1} + F_{n-2}$,
- **13.** Create a function for generating the Fibonacci numbers with user defined function as (function $f = Fib_1(n)$)
- 14. To study functions for numerical integration,
- 15. To study functions for differential and non-linear algebraic equations.
- 16. To study symbolic computation in MATLAB and evaluate symbolic expressions.

MATLAB SIMULINK

- To generate BASK signal and observe the frequency spectrum on MULTISIM software. 1.
- To generate BPSK signal and observe the frequency spectrum on MULTISIM software. 2.
- 3. To generate BFSK signal and observe the frequency spectrum on MULTISIM software.
- 4. To setup the model for BPSK baseband modulation for scatter plot to observe the constellation on MATLAB/SIMULINK software.
- 5. To setup the model for QPSK baseband modulation for scatter plot on to observe the constellation on MATLAB/SIMULINK software.
- 6. To setup the model for BFSK baseband modulation for scatter plot on to observe the constellation on MATLAB/SIMULINK software.
- 7. To setup the BPSK model with AWGN channel and perform error rate calculation/BER plot on MATLAB/SIMULINK software.
- To setup the QPSK model with AWGN channel and perform error rate calculation/BER plot on 8. MATLAB/SIMULINK software.
- 9. To setup the BFSK model with AWGN channel and perform error rate calculation/BER plot on MATLAB/SIMULINK software.

TPID-521 Industrial Training (2 weeks)														
			L			Т				Р			Credi	ts
			0			0				40			1 (S/U	S)
<u>Cours</u> Objec			ng envi ctive to ts will	ronmer o unde oe able	nt and e rstand to trou	enhanc	e their is pract ot vario	knowle tical is ous eng	edge sk sues ai gineerii	cills tov nd late ng fault	vards d st trend s relate	evelop ds in th	ing a h ne fielo	olistic 1. The
Cours Outco		1: imp 2: corr 3: ach theo	lement elate th ieve a pretical cess the	the tec theore long-t and pra- tir work	hnical retical erm go acticin c effect	n of ind skills a concep bal of g engin tively th	s an inc ts with transfo leers. hrough	lividua the real rming verbal	l and ir l-life in thems and wr	n team. Idustria elves i itten co	l envire nto an mmun	onment optim	t. um ble	end of
				0		se Outo								
~~ .	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2
CO1	3	2												
CO2	3	2												
<u>CO3</u>	3		<u>3 2 3 2 2 2 1 3 1 3 3 3</u>											
CO4	1	1 1 1 1 1 1 1 3 3 1 3 1 3												

	PCEC-611 Digital Communication													
			T		1	<u> </u>	Comm		lon	D			Cradi	ta
			<u> </u>			0				<u>г</u> 0			<u>Crean</u>	15
		Sessio	-	rks		0				U			50	
					ninatio	on Mar	rks						50	
<u>Cours</u> Objec		comm provid perform	unication e in-do mance ating the	on sys epth k analys ie prob	tem, the nowled is of c ability	he adv lge of ligital	antage: digital commu	s over modu	analog lation on syst	nd the g comr schem cem in er Rec	nunica es. It the pre	tion sy empha esence	stem a sizes of of noi	and to on the se, by
	 Course Outcomes 1. Understand the theoretical aspects of digital communication system useful for today's multidisciplinary applications. 2. Gain knowledge about various data formats for digital data transmission. 3. Analyze the generation and detection of various digital modulation schemes. 4. Compare the performance of different types of digital pulse and band pass modulation techniques in terms of error rate and spectral efficiency. 5. Calculate probability of error for matched filter receiver to analyze the performance of digital communication system in the presence of noise. 													
			Map	oing of	f Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	3	2	0	1	0	0	0	2	2	2
CO2	3	2	2	3	3	2	1	1	1	0	1	2	3	3
CO3	1	2	1	2	1	2	1	1	0	1	1	1	3	3
CO4	3	3	2	2	3	2	1	1	1	0	1	2	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
000	5	5	5	<u> </u>	-	Unit-	Ť	1	1	Ū	4	<u> </u>		hrs
 Elements of digital communication system: Block diagram of digital communication system, digital representation of analog signals, advantages and disadvantages of digital communication system, noisy communication channels, information and entropy. Pulse code modulation: Sampling theorem for baseband and band pass signals, aliasing, signal recovery through holding, quantization of signals, quantization error, uniform and non-uniform 														

recovery through holding, quantization of signals, quantization error, uniform and non-uniform quantization, dynamic range, A-law and μ -law companding, pulse code modulation (PCM), differential pulse code modulation (DPCM), need of predictor, delta modulation (DM), adaptive delta modulation (ADM), comparison of PCM, DPCM and DM.

<u>Unit-II</u>

12 hrs

Line coding schemes: Power spectral density (PSD) of sequence of random pulses, power spectral density of digital data, introduction to line codes and its properties, unipolar, polar and bipolar signalling formats, NRZ& RZ modulation formats, ON-OFF signalling, AMI and Manchester coding and their power spectra, comparison among various line codes, pulse shaping.

Unit-III 12 hrs										
Digital modulation techniques modulator, coherent and non-coh coherent BPSK detection, diffe transmitter and receiver, offset binary frequency shift keying (B M-ary FSK, minimum shift key spectral analysis and comparison	nerent ASK detection, binary perential PSK, quadrature pha QPSK, M-ary BPSK, quadr FSK) transmitter, non-coherent ving (MSK) and Gaussian mi	bhase shift keying (BPS) se shift keying modul rature amplitude modul t FSK detector, coherent inimum shift keying (G	K) transmitter, ation (QPSK) ation (QAM), FSK detector, MSK), power							
<u>Unit-IV</u> 12 hrs										
Optimal reception of digital signal: Introduction, baseband signal receiver, probability of error for the baseband signal, optimum receiver for baseband and bandpass signals, optimum filter transfer function, matched filter and its probability of error, coherent system of signal reception (correlation receiver). Error calculations for digital modulation techniques: Probability of error for BPSK, effect of imperfect phase synchronization and imperfect bit synchronization on probability of error in AWGN channel, probability of error calculations for QPSK, QASK and FSK schemes, use of signal space for calculation of error probability, relationship between bit error rate (BER) and symbol error rate (SER).										
	RECOMMENDED BOOI	<u> </u>								
Title	Author	Publisher								
1. Principles of Communication Systems	Goutam Saha , Herbert Taub , Donald Schilling	Tata McGraw Hill Edu Limited, 3rd Edition, 2								
2. Communication SystemsSimon Haykin, Michael MoherJohn Wiley & Sons Publication, 5th Edition, 2009										
3. Digital CommunicationsBernard SklarPearson Education Limited, 2014										
4. Modern Analog and Digital Communication	Bhagwandas Pannalal Lathi, Zhi Ding	Oxford University Pre	ess, 2010							
5. Digital Communication System	John G. Proakis, Masoud Salehi	McGraw-Hill, 2008								

	PCEC-612 EMF & Transmission Lines L T P Credits													
			T		EN		ransm	ission	Lines	р			Cradit	te la
			3			0				0			3	1.5
		Sessio	nal Ma	ırks		-							50	
		End S	emeste	r Exar	ninatio	on Mar	·ks						50	
Cours Objec			-			e is to s gnetics				1 /	eories,	princip	oles rela	ated
Course Outcomes1. Understand and analyze the static and time-varying electric and magnetic fields.2. Interpret and apply Maxwell's equations to analyze EM waves.3. Understand basic concepts of electromagnetic waves transmission through conductors and dielectrics medium.4. Analyze basic transmission line parameters, such as reflection coefficient, standing wave ratio and impedance.														
Mapping of Course Outcomes with Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			PO12		PSO2
C01	3	3	2	3	2	2	1	1	0	0	0	2	2	2
CO2 3 3 2 1 2 2 1 0 2 0 1 3 3 CO2 3 3 2 1 2 2 1 0 2 0 1 3 3														
CO3	3	1	1	0	2	1	1	1	0	3	2	2	3	3
CO4	3	3	2	2	2	2 Unit-	2	1	1	1	2	2	2 12	2
cylind Static superp flux, e capaci	rical, s elect osition lectric tor, div	n: Revie pherica ric fie n of ele- flux de vergenc rent and	l and th ld: Fo ctric fie ensity c e theor	eir tran rce be elds, el or displ rem, Pc	sforma tween ectric s acemen	ations. point scalar p nt dens	chargotentia	es, Co il, char uss's la	oulomb ge den w, app	`s law sity, gra	r, elect adient o n of Ga	ric fie of poten nuss's la	ld intential, e	ensity, lectric rgy in
cquation	on, cui			nooun	uary.	Unit-	II						12 h	rs
Static magnetic field: Magnetic induction and Faraday's law, magnetic flux density, magnetic field strength, current density in a conductor, Ampere's law, Stokes's theorem, energy stored in magnetic field, force on moving charge and current element, Biot-savart law, magnetic vector potential, boundary relation in magnetic fields. Time varying fields: Maxwell equation from Faraday's law, displacement current, Maxwell 's equation from Ampere's law, equation of continuity for time varying fields, Maxwell's equations in integral and differential forms for free space, conditions at boundary surface.														
						<u>Unit-</u>	III						12 h	rs
free sp mediu polariz coeffic	Wave transmission : EM wave in a homogeneous medium, Maxwell's equations, wave equations in free space, uniform plane wave propagation, intrinsic impedance, wave equations for conducting medium, sinusoidal time variations, conductors and dielectrics, linear, elliptical and circular polarization, reflection of plane waves at interfaces, normal and oblique incidences, reflection coefficient, Brewster angle, group velocity, phase velocity, power and energy relations, Poynting vector, waves between parallel planes, TE, TM and TEM waves.													

<u>l</u>	Unit-IV 12 hrs										
Transmission lines : Introduction, basic pr distribution, characteristic impedance, pr reflection coefficient, VSWR, open and sh matching, types of high frequency transmis	opagation constant, attenuation ort-circuited transmission lin	ion constant, pl	nase constant,								
RECOMMENDED BOOKS											
TitleAuthorPublisher											
1. Elements of Electromagnetics	M Sadiku	Oxford Unive	rsity Press								
2. Electromagnetics	J A Edminister	Schaum's Seri	es								
3. Electromagnetics	Kraus	McGraw Hill									
4. Electromagnetic Fields and Waves	K D Parsad	Parkash Publi	cations								
5. EM waves & Radiating Jordan, Balmain Prentice Hall											
6. Electromagnetic W H Hayt McGraw Hill											

OEEC-611A Linear Integrated Circuits														
			L			Т				Р			Credi	ts
		C •	3			3				0			3	
		Session			• • •		.1						<u>50</u>	
Cours						on Mar							50	
Course Objectives The aim of this course is to introduce the basic building blocks of linear integrated circuits and acquire knowledge of fundamental characteristics of op-amps. The course analyzes op-amps with and without feedback and determines the negative feedback affects the performance of op-amps. It also includes learning of linear and non-linear applications of operational amplifiers and studies various applications using 555 timer and PLL.														
Cours Outco		 An Decire 	alyze d sign aı cuits ar plain O	ifferen nd ana nd deteo p-amp	t op-an lyze lii ctors. based s	np conf near ar special	igurati nd non ized IC	ons and -linear s.	d their f circui	-amps. frequen ts, acti	cy resp ve filte			ierator
										n Outc				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2
CO1	2	3	3	3	2	1	0	1	2	0	2	3	3	3
CO2	3	3	3	3	2	1	0	1	1	0	0	3	3	3
CO3	2	2	3	3	1	1	0	1	1	1	2	3	3	2
CO4	3	3	3	3	3	1 Unit-	0	1	0	0	0	3	3	3 hrs
differe Opera typical range, equiva Op-Au voltage	ential a tiona l l op-an overv llent ci mp pa e, ther	n: Intro mplifie l ampli np, integ iew of t rcuit of ramete mal dri de confi	r stages fiers (grated o typical can op-a ers: Inp ft, vari	s, level Op-am circuits set of amp, id out offs ation of	transla np): Ba and the data sh eal op- et volta of op-a	tor. asic op eir type eets, ch amp an age, inp mp par	-amp a es, IC p haracte d its ch out bias cameter	and its ackage ristics aracter current rs with	schem types, and per ristics, it, inpu supply	atic sy pin ide rformat ideal vo t offset y volta	mbol, ntificat nce par oltage t	block tion and tameter ransfer t, total	diagrar l tempe rs of op curve. output	n of a erature o-amp,
						<u>Unit-</u>	II						12 h	irs
Op-Amp configurations and frequency response : Open loop configurations: differential, inverting & non-inverting. negative feedback configurations: block diagram representation of feedback configurations, voltage-series feedback amplifier, voltage shunt feedback amplifier, differential amplifiers with one op-amp, two op-amps and three op-amps. frequency response, compensating networks, frequency response of internally compensated op-amps, frequency response of non-compensated op-amps, closed loop frequency response.														
Unit-III 12 hrs														
Applications of op-amps: DC and AC amplifiers, peaking amplifier, summing, scaling and averaging amplifier, instrumentation amplifier, V to I and I to V converter, log and antilog amplifier, integrator and differentiator. Active filters: First order and second order filter, higher order low-pass filter, second order high pass filter, band pass filter, wide band-pass filter. band reject filter, all-pass filter.														

Wave generator: Square wave generator, triangular wave generator, saw tooth wave generator and voltage-controlled oscillator, comparator, zero crossing detector, Schmitt trigger, window detector, V to F and F to V converters, A to D and D to A converters, peak detector.

Unit-IV 12 hrs											
Specialized IC applications : IC 555, pin configuration, block diagram, application of 555 a monostable and astable multivibrator, operating principles & applications of 565PLL. Voltage regulators: Fixed voltage regulators, adjustable voltage regulators, switching regulators.											
RECO	MMENDED BOOKS										
Title	Author	Pub	lisher								
1. Op Amps & Linear Integrated circuits	.Ramakant Gayakwad	Pearson Educ	ation								
2. Fundamental of Microelectronics	B Razavi	Wiley India									
3. Linear Integrated Circuits	D. Roy Choudhary	New Age Inte	rnational								
4. Design with Operational Amplifiers and Analog Integrated Circuits	Sergio Franco	Tata Mc-Grav	v Hill								

OEEC-611B Digital Electronics														
			L 3			<u> </u>			3	P 0			Credit 3	ts
		Sessio	nal Ma	rks									50	
		End S	emeste	r Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec	Course ObjectivesThe aim of this course is to introduce basic postulates of Boolean expressions and analyze the design of combinational circuits, sequential circuits, digital logic families, semiconductor memories and programmable logic devices.													
	Course Outcomes1. Understand various logic gates and design simple combinational circuits. 2. Design and analyze sequential digital circuits. 3. Identify and distinguish digital logic families. 4. Elaborate the concept of semiconductor memories and programmable logic devices.													
						se Outo								
~~ ~ ~	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12		PSO2
CO1	3	3	3	1	2	2	0	1	0	0	1	2	3	3
CO2	3	3	3	1	2	2	2	1	0	0	1	2	3	3
CO3	2	3	3	1	2	2	0	1	0	0	0	2	3	3
CO4	2	1	2	1	2	2 Unit-	2	1	0	0	0	2	3 12	3
minim and in compa	ization nplem trators	n: Repr n of Boo entation , code co Latches, o, excita	olean e n of a onverte	xpressi dder, s ers. ip-flop	ion usi ubtrac	ng K-m tor, mu <u>Unit-</u> ip-flop	nap (up ultiplex <u>II</u> , race a	to six xer, de	variab -multip conditi	les), rev blexer,	view of encod	f logic er, dec	gates, o coder, o 12 h	design digital
						Unit-	Ш						12 h	rs
Unit-III12 hrsCounters & shift registers: Design with state equations, ripple counters, design of modulo-n ripple counter, pre-settable counters, up-down counter, decade counter, design of synchronous and asynchronous counters, design of shift registers with shift-left, shift-right & parallel load facilities, universal shift registers.														
						<u>Unit-</u>	IV						12 h	rs
Digital logic families : Characteristics of digital circuits: fan in, fan-out, power dissipation, propagation delay, noise margin, transistor-transistor logic (TTL), types of TTL gates, tristate logic & its applications, emitter coupled logic (ECL), CMOS, comparison of characteristics of TTL, ECL, and CMOS, interfacing of logic families. Semiconductor memories : Memory organization, ROM, PROM, EPROM, EEPROM, RAM, Static RAM, dynamic RAM cell, memory cell, reading & writing operation in RAM.														

REG	RECOMMENDED BOOKS										
Title	Author	Publisher									
1. Digital Design	Morris Mano	PHI, 4 th edition									
2. Digital System Principles & Applications	R J Tocci	РНІ									
3. Digital Integrated Electronics	Taub Schilling	Tata McGraw Hill Education									
4. Integrated Electronics	Millman & Halkias	Tata McGraw Hill Education									
5. Digital Computer Electronics	Malvino Brown	Tata McGraw Hill Education									
6. Modern Digital Electronics	R P Jain	Tata McGraw Hill									

OEEC-611C Electronic Measurements and Instrumentation														
			L			T	ments		iisti uii	P			Credi	ts
			3			0				0			3	
		Sessio											50	
		End S	emeste	er Exan	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		insight	to PMN al and v	urse is to MC inst vice ver	rument	and bri	dges. It	discus	ses as to	o how tl	ne analo	og data i	is conve	<u> </u>
<u>Cours</u> Outco		2. Unde 3. Unde	erstand erstand	ous type the worl bridge the workin	king of I heory, v	PMMC vorking	and oth of A/D	er instru and D//	uments. A conve	rters and				nts.
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	1	2	2	0	1	0	0	0	2	2	1
CO2	0	3	3	1	2	2	2	1	0	0	0	2	2	1
CO3	0	3	3	1	2	2	0	1	0	0	1	2	2	1
CO4	0	3	3	1	2	2	2	1	0	0	1	2	2	3
						<u>Unit-</u>	I						12	hrs
basics of Electro and am	of statis	ive error stical ana eters: I methods C bridge	Digital v	voltmete tstone b	er syste	ent, galv <u>Unit-</u> ms, dig low resi	vanome II ital mul stance	ter, DC ltimeter measur	ammete c, digital ements,	er, DC v l freque low res	oltmete ncy me	r, series	ohm m 12 h em, vol	eter. Irs
						<u>Unit-</u>	III						12 ł	irs
servo n conver	nethod, ter: tra	gital con success ansfer c s of D/A	ive app haracte	roximat eristic,	tion me	thod ran onversio	np type on tech	, integra	ating an	d dual s	lope int	egrating	g metho perfor	od. D/A mance
						<u>Unit-</u>							12 k	
CRO : CRT, wave form display, time base, dual trace oscilloscope, measurement of voltage, frequency, and phase by CRO, oscilloscope probes, oscilloscope specifications and performance. Signal generator, analyzer and recorders: sine wave, non-sinusoidal signal and function generators, frequency synthesis techniques and digital signal generators, spectrum analyzer and distortion, concept of ECG, EMI, EMC, and EEG etc, X-Y recorders, plotters.														
RECOMMENDED BOOKS														
		Title					Α	uthor			Pu	ıblishe	r	
1. Electronic Instrumentation and Measurements David A. Bell 2nd Ed., PHI , New Delhi,2008														
	tronic rumenta	Measure ation.	ements	and		Oliver	and Ca	.ge		TMH	I, 2009			

OEEC-612A Principle of Communication Engineering														
			L		-	Т				Р			Credi	ts
		G •	3			0				0			3	
			nal Ma		• • •		.l						50	
0						on Mar							50	
<u>Cours</u> Objec		comm	unicati	on syst	ems. T	rse is or he stuc , gener	lents w	ill stuc	ly the v	various	analog	g and d	igital	thods.
-	 Course Outcomes Gain knowledge about the fundamental concepts communication systems. Analyse AM, SSB, FM and PM transmission and reception circuits. Analyze the performance of amplitude and frequency modulated systems and design of PAM, PWM and PPM systems. Acquire knowledge about the basic concepts of digital modulation and demodulation techniques. Mapping of Course Outcomes with Program Outcomes													
									-					
<u> </u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12		PSO2
CO1	3	2	2	2	2	2	0	1	0	2	1	2	3	3
CO2	3	3	3	3	2	2	1	1	2	2	1	2	3	3
CO3 1 1 0 1 2 0 1 1 3 2 3 3														
CO4	2	1	1	2	0	2 Unit-	0	1	1	0	1	2	3	3 hrs
and ra modul Ampl	andom lation. itude r	n of sig signal nodula ower co	s, elen tion: [nents c Definiti	of a co on, exp	ommun	ication n of AN	syste	n, mo	dulatio	n and	its typ	es, ne	ed for
	71					Unit-							12 h	rs
analys modul Gener	sis of F lation c ration o	Ilation: FM, spe bbtained fAM ar le modu	ectra of d from f nd FM	FM si frequen waves:	gnals, cy moo Basic	narrow dulation princip	band h, comp le of A	FM, w parison M gene	vide ba of AM eration	nd FM I, FM an , basic p	, phase nd PM. princip	e modu le of FN	lation,	phase
						<u>Unit-</u>	III						12 h	rs
Pulse modulation: Sampling process, sampling theorem, natural sampling, flat top sampling, sampling rate, aliasing, basic idea about PAM, PWM and PPM and typical applications, reconstruction of message, pulse code modulation (PCM), block diagram of PCM system, quantization.														
						<u>Unit-</u>	<u>I V</u>						12 h	irs
repres Digita ASK 1 Digita	entatio al carri nodula	f digita on of ana ier mod itor, fred ier dem	alog sig lulatio quency lodula 1	gnals, ao n techi shift ko tion teo	dvanta niques eying (chniqu	ges and : Introd FSK), F es: Col	disadv uction SK.	antage , ampli	es of dig tude sh	gital con nift key	mmuni ing (AS	cation SK), AS	system SK spe	, ctrum,

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Communication Systems (Analog and Digital)	Sanjay Sharma	S.K. Kataria & Sons									
2. Electronic Communication Systems	Kennedy	Tata McGraw Hill									
3. Electronic Communications	Roddy and Coolen	Prentice Hall of India									
4. Principles of Communication Systems	Taub and Schilling	Tata McGraw Hill									

							EEC-6 al Ele	612B ctronic	2S						
			L			T			~	Р			Credi	ts	
			3			0				0			3		
		Sessio											50		
		End S	emeste	er Exar	ninatio	on Mar	·ks						50		
<u>Cours</u> Objec		optoel	ectroni ors, di	cs and splay	vario	us opti	ical de	vices i	i.e. op	with the tical so dy the	ources,	modu	lators,	photo	
-	Course Outcomes1. Use principles of physics to analyze the fundamental concepts of various optoelectronic components.2. Describe the characteristics of Optoelectronic devices. 3. Familiarize with tools and processes used in fabricating optoelectronic components. 4. Utilize knowledge to Implement optoelectronic communication systems.														
									. <u> </u>	n Outc					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11			PSO2	
CO1	2	2	3	3	2	1	2	1	0	0	2	2	2	3	
CO2	3	3	3	3	2	2	0	1	2	1	0	1	2	3	
CO3	3	3	2	2	3	2	1	1	2	0	3	3	2	2	
CO4	3	3	3	3	2	2 Unit-	2	1	2	0	3	3	2 8 h	2	
diffrac optica	ction, l l syste	f light ight sou ms and nd semio	rce, rev fundan	view of nental l	quanti quanti	um meo g block	chanica ks, basi	ll conce cs of se	ept, rev emicon	ductor	solid-st optoel	tate phy ectroni	/sics, g cs, eler	eneric	
						<u>Unit-</u>	II						14 h	irs	
popula popula operat applic	ation in ation in ion, fro ations	rces an inversion nversion equency of laser ators, e	on, opt n and p / stabili s, LED	ical fe oumpin ization s electr	edbacl g three VCSE co-optio	x, three shold c EL, mod c effect	shold onditio de lock , electr	conditions, las	ons-la ser mod switchi	ser los des, cla ing, las	ses, li sses of er appli	ne sha f laser, ications	pe fur single s, high r modu	nction, mode power lators,	
						<u>Unit-</u>	III						14 h	irs	
Photo detectors: Principle of optical detection, detector performance parameters, thermal detectors, photon devices, solar cell. Display devices: Luminescence, photoluminescence, cathode luminescence, cathode ray tube, electro luminescence, injection luminescence and light emitting diodes, plasma displays, display brightness, LCD, numeric displays.															
						Unit-	IV						12 h	irs	
		nic integ												ion of	

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Semiconductor Optoelectronic Devices	Pallab Bhattacharya	Pearson Education Inc									
2. Photonics - Optical Electronics in Modern Communications	A. Yariv and P. Yeh,	Oxford University Press									
3. Opto Electronics – As Introduction to materials and devices	Jasprit Singh	McGraw-Hill International									
4. Opto Electronics – An Introduction	J. Wilson and J. Haukes	Prentice Hall, 1995									

Course	-		L					gramn	mng					
	Γ					Т				Р			Credi	ts
			3			0				0			3	
	-	Session											50	
		End Se											50	
Objectivesfor numerical computations and its application in engineering and technology.Course1. Understand basic commands, manage contents and develop programs in MATLAB.												gramm nology		guage
Course Outcon		 Uno Per Eva Eva Uti 	form m aluate, a	nathem analyze	atical n e and pl	nodelin ot resu	g in MA lts.	ATLAE	3.	1				νВ.
			Mapp	oing of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	1	1	1	2	1	2	3	2	2
CO2	2	3	3	3	3	2	1	1	2	1	1	2	2	3
CO3	3	3	3	3	3	0	0	1	3	2	2	3	1	2
CO4	3	2	2	3	3	1	0	1	3	2	2	3	3	2
	-	Unit-I										12	hrs	
execution Matrice creating operation Linear finding fitting, is and inte	es an g vect ons, el alget eigen interp	d vecto ors, ma ementa ora, int values olation,	ors ma atrix an ry math cerpola & eige data a	nipula nd arra functi tion a nvecto nalysis	ntion: Introduction the second	Unit- Matrice rations, atrix fur <u>Unit-</u> ta anal rix fact atistics	II es and arithm nctions III lysis: Sorization	vectors netic o and ch Solving	s input peratio aracter a line ynomia	t, index ons, rel strings ar syst ar syst	ational em, Ga	atrix r operat	tions, 1 12 h elimir squares	lation, logical mrs nation, s curve
			_			Unit-	IV						12 h	irs
Graphi control, 3-D plot	zoom					s, style	options						object	s, axis
					REC	COMM	ENDE	D BOO	OKS					
TitleAuthorPublisher														
1. Getti	ng Sta	arted w	ith MA	TLAB		Ru	ıdra Pra	atap,		С	xford	Univers	sity Pre	ess
2. MAT	TLAB	Program	mming				Kirani B. Cha			Р	HI			
3. MAT in En	TLAB nginee		Applic	ations		Ra	j Kuma	r Bansa	1	Р	earson	Educat	tion Inc	lia
4. MAT	LAB	by Exa	mple			At	hishek	Kr Gu	pta,	F	inch Pu	ublicati	ons	

PEEC-611A Pulse and Digital Switching Circuits														
			L			T				P			Credit	ts
		Sessio	3 nol Ma			0				0			$\frac{3}{50}$	
		End Se			ninatio	n Mar	·ks						<u> </u>	
Cours						us line		o choni	na oir	uita a	vitahin	a ahar		ios of
<u>Objec</u>		diode, circuit	transis s, Schn	tor and nitt trig	l non-li gger cii		ave shaing tra	aping c nsistors	circuits s, bloc	. The d king os	lesign o	of multi	ivibrato	or
Course Outcomes1. Acquire knowledge of wave shaping circuits and switching characteristics of diode and transistors.2. Analyze different types of multivibrator and their design procedures. 3. Introduce time base generator circuits, blocking oscillator circuits. 4. Design linear and non-linear wave shaping circuits														
						se Outo								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				PSO2
CO1	2	3	3	3	2	0	0	1	2	1	1	1	2	2
CO2	3	3	3	3	2	2	0	1	0	2	1	1	3	2
CO3	2	1	1	2	1	0	0	1	2	1	0	0	2	3
CO4 3 3 3 3 2 1 1 0 2 1 1 2 3 Unit-I														
square integra Non-l emitte clamp circuit	e, ramp ator, at inear er coup ing cin ts, effe	e shapi and ex tenuator wave sl led clip ccuits u ct of dio	ponent rs, RL a haping per, dic sing di de char	ial inpu and RL : Diod ode con ode w racteris	uts, hig C circu e clipp nparato ith diff trics on	h pass hits and bers, tra brs, app ferent i clampi <u>Unit-</u>	RC cire their re ansistor plicatio nputs, ing volt	cuit as esponse r clippe ns of ve clamp tage.	differe e for ste ers, cli oltage ing cir	ntiator p input pping a compar cuit the	and lov , ringin at two rators, eorem,	w pass ng circu indepe clampin practio	RC circ it. ndent l ng oper cal clan 12 h	evels, cation, mping
of satura satura Bistak and se	uration tion. ble mu elf-bias	tivibra ltivibra ded bista mitter c	eters, o ators: S able mu	design Stable s iltivibr	of transtates cator, di	nsistor of a bist irect co tivibrat	as a sy table m onnecte tor.	witch, ultivib	transis rator, c	tor swi lesign a	tching and ana	times, alysis o	transis f fixed rcuit u	stor in bias sing
Unit-III12 hrsMonostable and astable multivibrators: Monostable multivibrator, design and analysis of collector coupled, and emitter coupled monostable multivibrator, triggering of monostable multivibrator, astable multivibrator, collector coupled and emitter coupled astable multivibrator.														
Unit-IV 12 hrs														
 Time base generators: General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, transistor Miller time base generator, transistor Bootstrap time base generator, current time base generators, methods of linearity improvements. Blocking oscillator circuits: Triggered transistor blocking oscillator, an astable transistor blocking oscillator, applications of blocking oscillators. 														

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. Pulse, Digital and Switching Waveforms 3rd Edition, 2008.	Millman and Taub	Tata McGraw-Hill								
2. Microelectronic Circuits, 7th Edition 2014	Sedra and Smith	Oxford University Press								
3. Pulse and Digital Circuits, 2006	Motheki S. Prakash Rao	Tata McGraw-Hill								
4. Fundamental of Microelectronics, 2nd Edition 2009	B.Razavi	John-Wiley								

						P	EEC-6 MEM								
			L			Т				Р			Credit	S	
			3			0			0			3			
			nal Ma		50nination Marks50										
													50		
Course ObjectivesThe course aims to give the students a basic knowledge about s including technology, device architecture, design and modelling, merit and RF IC novel functionality and performance. Reliability a 									ling, so	scalability, figures of					
Cours Outco		2. Stuc in desi 3. To u	lent wil gn of N ndersta uttain k	ll acqui IEMS. and bas nowled	re knov ic idea lge abc	wledge fluid m out vari	about o echani ous lev	differer cs in m vels of j	nt facto icro an packag	rs and p d macro ing of	propert o scales micros	ies of n s.	naterial	s used	
						se Outo									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	3	2	2	2	1	3	2	1	2	2	1	
CO2	2	2	2	2	1	0	1	1	3	2	1	2	2	2	
CO3	3	3	1	1	0	0	3	1	3	2	1	2	1	1	
CO4	2	2	1	2	1	0 Unit-	1	1	3	2	1	2	2 12	2	
Micro Scalin the tri	system ig law s mmer	ns and ns, micro s in min force s d fluidi	o senso 1iaturi caling	rs, mic zation vector,	ro actu : Introc , scalin	ators, N luction ng in el n heat c	IEMS , scalin ectrost	and mid ig in ge atic fo	cro acti cometry rces, e	uators, y, scalin lectron	micro a ng in ri nagneti	ccelero gid boo	ometers dy dyna es, scal	s. amics, ing in	
						<u>Unit-</u>	II						12 h	rs	
substra Silicon arsenio Engin plates Mecha coeffic	ates fo n com de, qua ceering with e anical cients.	or MEM r MEM pounds urtz, piez g mecha edge fix vibrati thermo d interf	S, sing ; SiO ₂ , zoelect unics fo ed, rec on, re mecha	le cryst SiC, ric cryst or micr tangula sonant unics, th	tal Silio Si ₃ N ₄ a stals, po osyste ar plate vibra nermal	con and and polymers ms des with a tion, n stresse	l wafer lycryst s for M ign: In ill edge nicro a s. fract	s crysta alline EMS, c troduct es fixec acceler	al struc silicon conduc ion, sta l and s ometer	cture, m , silico tive pol atic ben quare p rs, des	nechani n piez lymers. ding of plates v ign th	ical pro o-resist f thin pl vith all eory a	perties tors, ga ates, ci edges nd dau	of Si, allium rcular fixed. nping acture	
numbe compu effect Mach condu	er. bas utation and m numb ction i	tid mec sic equa al fluid ticro pu er and n solids thin film	ation i dynam mping modeli s in su	n cont lics, inc , fluid ing of	inuum compre flow in micro	fluid ssible f sub n gas flo	dynam fluid flo nicrom ow, hea	ics, lat ow in n eter an at cond	minar nicro co d nanc luction	fluid flood onducts oscale, in mu	flow ir s, surfa rarefie Iltilaye	ce tens d gas, l red thin	lar cor ion, caj Knudse n films	nduits, pillary en and s, heat	

Unit-1	<u>[V</u>	12 hrs										
Micro system packaging and applications of MEMS: Micro system packaging, general considerations, the three levels of microsystems packaging, die level, device level and system level, essential packaging technologies, die preparation, surface bonding wire bonding and sealing, three-dimensional packaging, assembly of microsystems, selection of packaging materials. The MEMS switch and its design consideration: The MEM resonator and its design considerations, micromachining-enhanced planar microwave passive elements.												
RECOMM	ENDED BOOKS											
Title Author Publisher												
1. MEMS and Microsystems Design and Manufacture	Tai-Ran Hsu	Tata McGraw Hill										
2. Fundamentals of Micro fabrication	Mark Madou	CRC Press										
3. Micro sensors: Principles and Applications	J. W. Gardner	John Willey ,2009										
4. Semiconductor Sensors	S. M. Sze	Tata McGraw Hill										
5. An Introduction to Microelectromechanical Systems Engineering	Nadim Maluf and Kirt Williams	Artech, 2 nd Edition, 2004										
6. Introduction to Microelectromechanical Microwave Systems	Hector J. De Los Santos	Artech, 2 nd Edition, 2004										

					T 0		EEC-6		<u> </u>						
					Infor	matior	1 Theo	ry and	Codin	-			~ ~ ~ ~		
			L			Т				P			Credi	ts	
			3			0				0			3		
			nal Ma										50		
		End S	emeste	er Exar	ninatio	on Mar	:ks						50		
<u>Cours</u> Objec		relation capacit measur efficien detecti	The course will study how information is measured in terms of probability and entropy, and the elationships among conditional and joint entropies; how these are used to calculate the apacity of a communication channel, with and without noise; how discrete channels and neasures of information generalize to their continuous forms; complexity, compression, and fficient coding of text, and audio-visual information coding schemes; including error etecting and correcting codes, block coding, convolutional coding, Viterbi decoding lgorithm, Trellis coded modulation and information security: cryptographic coding.												
Cours Outco		 Learn the concept of Information and information security. Cryptographic coding. Learn the concept of Information and to calculate the information content of a random variable from its probability distribution Understand the physical significance of entropy and to imbibe a clear-cut idea about the various entropies associated with a communication system Gain comprehensive understanding about capacity, efficiency and redundancy of a communication channel Perform bit error analysis for digital modulation techniques. Devise efficient coding techniques of communication channels. 													
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	0	0	0	0	0	1	2	0	1	2	2	3	
CO2	1	0	0	0	2	0	0	1	1	0	2	2	2	2	
CO3	3	2	0	0	2	2	0	1	1	0	1	2	2	2	
CO4	0	3	0	3	0	2	0	1	0	0	2	2	3	3	
C05	3	0			0	3	3	1		0	2	l	3	3	
005	3	U	2	0	U	_	-	1	2	U	2	2	-	-	
						<u>Unit-</u>	_						12		
joint e redund	entropi dancy a	theor es -rela and effi	ation and ciency	mong of char	entropi mels.		tual in	format	ion, in	formati	on rate	e, chan	nel caj	pacity,	

Discrete channels: Symmetric channels, binary symmetric channel, binary erasure channel, cascaded channels, repetition of symbols, binary symmetric channel, Shannon theorem, continuous channels – capacity of band limited Gaussian channels, Shannon-Hartley theorem, trade-off between band width and signal to noise ratio, capacity of a channel with infinite band width, optimum modulation system.

<u>Unit-II</u>		12 hrs	
techniques, purpose of encoding, instantaneous	codes, co	onstruction	0

Source coding: Encoding techniques, purpose of encoding, instantaneous codes, construction of instantaneous codes, Kraft's inequality, coding efficiency and redundancy, noiseless coding theorem, construction of basic source codes – Shannon-Fano algorithm, Huffman coding, arithmetic coding, ZIP coding.

Source coding, text, audio and speech: Text: Adaptive Huffman coding, arithmetic coding, LZW algorithm audio: perceptual coding, masking techniques, psychoacoustic model, MEG audio layers I, II, III, Dolby AC3 speech: channel vocoder, linear predictive coding.

Source coding, image and video: Image and video formats – GIF, TIFF, SIF, CIF, QCIF, image compression: READ, JPEG, video compression: principles-I, B, P frames, motion estimation, motion compensation, H.261, MPEG standard.

<u>Unit-III</u>	12 hrs
Codes for error detection and correction: Parity check coding, linear block codes, of	error detecting
and correcting capabilities, generator and parity check matrices, standard array a	and syndrome
decoding.	

Block codes: Definitions and principles: Hamming weight, Hamming distance, minimum distance decoding - single parity codes, hamming codes, repetition codes - linear block codes, cyclic codes - syndrome calculation, encoder and decoder – CRC.

Unit-IV

12 hrs

Convolution codes: Code tree, trellis, state diagram, structural properties, encoding – decoding: sequential search and Viterbi algorithm – principle of turbo coding, soft-decision decoding, and Viterbi decoding algorithm.

Advanced coding techniques and cryptography: BCH codes, trellis coded modulation, introduction to cryptography, overview of encryption techniques, symmetric cryptography, DES, IDEA, asymmetric algorithms, RSA algorithm.

RECOMMENDE	D BOOKS	
Title	Author	Publisher
1. Information Theory, Coding and Cryptography,	Ranjan Bose	Tata McGraw Hill
2. Applied Coding and Information Theory for Engineers	Richard B. Wells	Pearson
3. Coding and Information Theory,	R. W. Hamming	Prentice Hall, 2 nd edition,
4. Information Theory and Reliable Communication,	R. G. Gallager,	Wiley
5. The Theory of Information and Coding.	R.J. McEliece	Addison – Wesley
6. Introduction to information Theory	M. Mansuripur	Prentice Hall
7. Principles of communication	Taub & Schilling	McGraw Hill
8. Elements of Information Theory	Thomas Cover & Joy Thomas	John Wiley & Sons

				A	nalog &	F & Digit	PCEC- tal Cor		cation	Lab				
			L			Т				Р			Credit	ts
			0			0				4		2		
<u>Cours</u> Objec	urse jectivesThis lab includes hardware kits as well software simulator to analyze different analog communication systems. The main objective is to analyze the performance of AM, FM modulation systems in time and frequency domain, to study and design the circuits for transmission and reception of AM, FM and pulse modulation systems.													
Course Outcomes1. Design and analyze AM and FM modulation circuits on hardware as well as on MULTISIM simulator. 2. Understand transmission and reception of AM and FM systems. 3. Design and analyze various pulse modulation systems on hardware as well as on MULTISIM simulator. 4.To understand various transmission and reception methods and their comparison.														
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	0	1	3	2	1	3	3	2
CO2	3	3	3	3	3	2	2	1	3	2	1	3	3	2
CO3	3	3	3	3	3	2	0	1	3	2	1	3	3	2
CO4	3	3	3 3 3 3 2 0 1 3 2 1 3 3 2											

List of Experiments (Hardware):

PART-A

- 1. To measure the modulation index of AM signal using the sine wave method and trapezoidal
- 2. method.
- 3. To setup the circuit of AM modulator using transistor.
- 4. To setup the circuit of envelop detector for AM demodulation.
- 5. To study the DSB/ SC AM signal and its demodulation using product detector circuit.
- 6. To study the generation and detection of FM signals.
- 7. To study the AM transmitter circuit and observe the waveforms at test points.
- 8. To study the FM transmitter circuit and observe the waveforms at test points.
- 9. To study the AM receiver circuit and observe the waveforms at test points.
- 10. To study the sampling process and time division multiplexing.
- 11. To study the pulse amplitude modulation and demodulation circuits.
- 12. To study the pulse width modulation and demodulation circuits.
- **13.** To study the pulse code modulation and demodulation circuits.

Software (using MULTISIM)

- 1. To study the spectrum of pulses using spectrum analyzer.
- 2. To measure the modulation index of AM signal using the sine wave method and trapezoidal method.
- 3. To observe the amplitude spectrum and measure the bandwidth of AM signal.
- 4. To setup the circuit of AM modulator using transistor.
- 5. To setup the circuit of envelop detector for AM demodulation.
- 6. To setup the circuit of DSB/SC AM and DSB-FC AM using product modulator/multiplier.
- 7. To study the FM wave generated from FM source in MULTISIM and measure the modulation index by approximate method.
- 8. To observe the amplitude spectrum and measure the bandwidth of FM signal.
- 9. To generate FM signal using voltage-controlled oscillator on MULTISIM and observe the waveforms on CRO.

- 10. To generate pulse amplitude modulation (PAM) signal and observe its waveform.
- 11. To generate PWM signal using 555 timer IC and observe its waveform.
- **12.** To generate PPM signal and observe its waveform.

PART-B

Hardware

- 1. To study time division multiplexing system.
- 2. to study pulse code modulation and demodulation.
- 3. To study delta modulation and demodulation and observe effect of slope overload.
- 4. To study pulse data coding techniques for various formats.
- 5. To study amplitude shift keying modulator and demodulator.
- 6. To study frequency shift keying modulator and demodulator.
- 7. To study phase shift keying modulator and demodulator.

Software

- 1. To generate BASK signal and observe the frequency spectrum on MULTISIM software.
- 2. To generate BPSK signal and observe the frequency spectrum on MULTISIM software.
- 3. To generate BFSK signal and observe the frequency spectrum on MULTISIM software.
- 4. To setup the model for BPSK baseband modulation for scatter plot to observe the constellation on MATLAB/SIMULINK software.
- 5. To setup the model for QPSK baseband modulation for scatter plot on to observe the constellation on MATLAB/SIMULINK software.
- 6. To setup the model for BFSK baseband modulation for scatter plot on to observe the constellation on MATLAB/SIMULINK software.
- 7. To setup the BPSK model with AWGN channel and perform error rate calculation/BER plot on MATLAB/SIMULINK software.
- 8. To setup the QPSK model with AWGN channel and perform error rate calculation/BER plot on MATLAB/SIMULINK software.
- 9. To setup the BFSK model with AWGN channel and perform error rate calculation/BER plot on MATLAB/SIMULINK software.

				Li	F near Ir	PCEC- ntegrat		cuits							
		L			Т				Р			Credi	ts		
	~	2			1				0		3				
		nal Ma									50				
	End S	emeste	er Exar	ninatio	on Mar	·ks						50			
<u>Course</u>					to intr										
<u>Objectives</u>	analyz affects	zes op- s the per- ations	amps v erforma	with an ance of	ledge o nd with f op-an l ampli	out fe	edback also in	and d	letermi learnir	nes the	e negat near ai	ive fee nd non-	dback linear		
<u>Course</u> Outcomes	2. An 3. De cir	alyze d sign an cuits ar ilize Op	lifferen nd ana nd deteo o-amp b	t op-an lyze lin ctors. based sj	ncepts np conf near ar pecializ	igurati nd non zed ICs	ons and -linear	d their f	frequen ts, acti	ve filte		ve gen	erator		
DO1		PO3									DO12	DCO1	DGOO		
PO1		<u> </u>	PO4	PO5	PO6	PO7	PO8	PO9	PO10			PSO1			
CO1 2	3	3	3	2	1	0	1	2	0	2	3	3	3		
CO2 3	3	3	3	2	1	1	1	1	0	0	3	3	3		
CO3 2	2	3	3	1	1	1	1	1	1	2	3	3	2		
CO4 3	3	3	3	3	1	1	1	0	0	0	3	3	3		
	-				Unit-	I			-		-	12	hrs		
Introduction differential Operationat typical op-a range, over equivalent of Op-Amp p voltage, the common more	amplifie al ampli mp, inte view of fricuit of aramete rmal dri	r stages fiers (grated o typical can op-a ers: Inp ift, vari	s, level Op-am circuits set of c amp, id out offse ation c	transla p): Ba and th data sh eal op- et volta of op-a	tor. asic op eir type eets, ch amp an age, inp mp par on mode	-amp a es, IC p naracte d its ch out bias rameter e reject	and its ackage ristics aracter current rs with	schem types, and pe istics, it, inpu supply	atic sy pin ide rforma ideal vo t offset y volta	mbol, ntificat nce par oltage t	block tion and cameter ransfer it, total	diagrar l tempe rs of op curve. output rature,	n of a erature o-amp, offset noise,		
					<u>Unit-</u>	II						12 h	rs		
Op-Amp c & non-invector configuration amplifiers networks, the compensate	erting. r ons, vol with one requenc	negative tage-se e op-an y resp	e feedl ries fe np, two onse o	back c edback o op-ar f inter	configu ampli nps an nally c ency re	rations ifier, v d three compensions	block block	k diag shunt nps. fr	ram re feedb equenc	epresen ack an y resp	tation nplifier onse, c	of fee , diffe ompen onse of	dback rential sating		
					<u>Unit-</u>							12 h			
Application amplifier, in and differen Active filte filter, band	nstrumer tiator. rs: First	ntation order a	amplif	ier, V t ond or	o I and der filte	I to V er, high	conver ner orde	rter, log er low-	g and a pass fil	ntilog	amplifi	er, inte	grator		

to F and F to V converters, A to D and D to A converters, peak detector.

<u>I</u>	U nit-IV		12 hrs								
Specialized IC applications : IC 555, pin configuration, block diagram, application of 555 as monostable and astable multivibrator, operating principles & applications of 565PLL. Voltage regulators: Fixed voltage regulators, adjustable voltage regulators, switching regulators.											
RECOMMENDED BOOKS											
Title Author Publisher											
1. Op Amps & Linear Integrated circuits	Ramakant Gayakwad	Pearson Education									
2. Fundamental of Microelectronics	B Razavi	Wiley India									
3. Linear Integrated Circuits	D. Roy Choudhary	New Age Inte	rnational								
4. Design with Operational Amplifiers and Analog Integrated Circuits	Sergio Franco	Tata Mc-Grav	v Hill								

					T:b		PCEC-	.622 mmuni	lastion	~				
			L		FID	<u>re Opt</u> T		mmum		<u>s</u> P			Credi	ts
			3			0				0			3	
		Sessio											50	
		End S	emeste	er Exai	ninati	on Ma	rks						50	
<u>Cours</u> Objec		compo in opti i.e. op	onents t cal fibr tical sc ar with	for fibr re and j ources,	re comi perforn detecto	nunica nance o ors and	tion sy of Opti- ampli	stems. cal sou fiers of	Analyz rces an fibre o	optics zation of d detectory optic contraction	of varic tor. De	ous non escribe	linear the hau syster	effects dware ns and
Cours Outco		 2. An 3. Ap 4. De 5. Use 	alyze t preciat scribe t e the aj	he varie the the lo the vari ppropr	ous nor ong-hau ious op	nlineari 11 comr tical ne te-of-tl	ities in nunica twork he-art e	optical tion acl topolog enginee	comm hieved gies. ering re	for option unication by usin eference lems.	on syste g optic	em. al ampl	lifier.	-
	DOA	DOA								n Outc		DOIA	DCOI	DGO
<u>CO1</u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			
CO1	2	2	3	3	3	0	2	1	0	0	1	3	2	3
CO2	3	3	3	3	3	2	0	1	2	0	2	3	2	2
CO3	3	3	2	2	3	0	1	1	2	0	0	3	2	2
CO4	3	3	3	3	2	1	2	1	2	0	3	3	1	1
CO5	3	3	3	3	3	<u>1</u> Unit-		1	2	0	3	3	2	3 hrs
key ele Optica	ements al fibe	n to fib s of options rs: Basi and mul	cal fibe c optic	er syste al law a	m. stan and def	dard fo	or optic s, fiber	al comi charac	munica teristic	tion. s and tr	ansmis	sion, T		
						<u>Unit</u> -	·II						12 ł	nrs
bendir pulse ł Nonli i	ng loss broade near e	and ones, disp ning, hi ffects: S ation, fo	ersion gher or Stimula	(intern der dis ited Ra	nodal an persion man sc	nd inte 1, dispe	rmodal ersion s g, stim), grou lope,	p veloc	ity disp	persion	, disper	rsion ir	iduced id self
gaps, l of oper Optic detect	LED, s ration, al rece	rce: End structure laser di eivers: 1 ponse ti pors.	e, mate ode rat Princip	erial, qu e equat ole of P	iantum tions, q PIN pho	efficie uantun oto dete	ency, po n effici ector a	ower an ency, st nd aval	nd moc tructure anche	lulation e and m photod	, LASI odulati iode, p	ER diod ion. hoto de	des, pri etector	inciple noise

UG Syllabus for Degree Programme (applicable to 2018 batch onwards)

	<u>Unit-IV</u>		12 hrs								
Optical amplification : Introduction to a amplifiers (SOAs), Erbium doped fibre characteristics and gain saturation. Optical networking : fibre optics topol synchronous optical network (SONET) and	amplifiers (EDFAs) and I ogies, fibre distributed d	Raman amplifier a	DI) structure,								
RECOMMENDED BOOKS											
Title	Author	Publisł	ner								
1. Fiber-Optic Communication Systems	G. P. Aggarwal	J. Wiley & Sons.	2 nd Ed., 1997								
2. Optic Communication Systems	Mynbaev	Pearson education	on, 2001,								
3. Optical Fiber Communication	Gerd Keiser	McGraw Hill, 5 th	edition 2013								
4. Optical Fiber Communication	Senior	PHI									

					Micr	O oproce	EEC-6 essor &		ication	S					
			L			Т				Р			Credi	ts	
			3			0				0			3		
		Session			• • • •		.1						50		
0						on Mar							50		
<u>Cours</u> Objec		microp	process	sor 80	85 and		ning al	oout c	ommu	ture and nicatio					
Cours Outco	Dutcomes 1. Acquire the knowledge of hardware features, architecture of 8085. 2. Write basic assembly language program in 8085. 3. Understand design of memory systems and develop programs for communication and peripherals interfacing. 4. Describe basic functioning of advanced microprocessors. Mapping of Course Outcomes with Program Outcomes												ations		
			Map	oing of	f Cours	se Outo	comes	with P	rogran	n Outc	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	2	2	1	0	1	0	0	2	2	3	3	
CO2	3	3	2	3	1	2	2	1	0	0	1	2	2	3	
CO3	3	3	3	3	2	2	2	1	1	0	1	2	3	3	
CO4	3	3	3	3	0	0	2	1	0	0	0	3	2	3	
						<u>Unit-</u>	<u>I</u>						12	hrs	
input/	output	proces , interf ormat, in	acing	device	s MPU	J, 808	5 base IPU, ov	ed mic	rocom	puter,	instruc	ction c	lassific	ation,	
operat debug	tions, b ging,	ng usin oranch o time de oroutine	peratic elays,	ons, pro	gramn	ning teo	chnique proutin	es usin	g loopi	ng cou	nting &	t index	ing, dy	namic	
—		T1 0.00			1 0/							1.7/			
proces Paral displa	sses. lel inp ys, inte	The 808 ut/outp erfacing nverters	ut and input	interi	facing	applic	ations:	Basic	interfa	cing co	oncepts	, interf	àcing c	output	
						I	Unit-IV	7					12 h	rs	
progra	ummab	Irpose le perij troller, S	pheral	interfa	ace, 82	253 pro	ogramn								

REC	COMMENDED BOOKS	
Title	Author	Publisher
1. Microprocessor Architecture- Programming & Applications with 8085/8080A	Ramesh S Gaonkar	5 th Edition, Penram International Publishing
2. Introduction of Microprocessors & Microcomputers	Ram B	4 th Edition, Dhanpat Rai Publisher (P) Ltd.
3. Microprocessor Interfacing Technique	Rodnay Zaks and Austin Lesea	1 st Indian Edition, BPB Publication
4. An introduction to Intel family of Microprocessors	James L Antonakes	3 rd Edition, Pearson Education
5. Microprocessor Principles and Applications	Charles M Gilmore	2 nd Edition, McGraw Hill

							EEC-(Tech	621B nology	7					
			L			T		<u> </u>		Р			Credi	ts
			3			0				0			3	
		Sessio	nal Ma	irks									50	
		End S	emeste	r Exan	ninatio	on Mar	·ks						50	
Cours	se	The ob	ojective	e of the	subje	et VLS	I Tech	nology	is to c	liscuss	the des	sign an	d fabri	cation
Objec	ctives					ilm and								
						stal gro								
				ledge o	of fabri	ication	proces	ss flow	and le	earning	design	n and f	abricat	ion of
		MOSF	ЪТ.											
Cours	se_	1.	Under	rstand t	he basi	cs of fa	bricati	on proc	cess, its	requir	ements	and ch	allenge	es.
Outco	<u>omes</u>	2.				nt techn	1					1.		
		3.				for NM			nd bipo	olar circ	uits.			
		4.				n VLSI								
						se Outo			<u> </u>					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	
CO1	3	1	3	2	2	1	1	1	1	0	2	2	2	2
CO2	3	2	2	1	0	1	1	1	1	0	3	2	1	3
CO3	3	2	2	1	1	0	0	1	0	0	1	2	2	3
CO4	3	2	2	2	3	3	2	1	1	0	3	3	3	3
						<u>Unit-</u>	I						14	hrs
impur	ity pro	files.		tion m	odeling	g, tech	nology	oration and	: solic damag		diffus aling,	ion m charac	odellin terizat	g and ion of
impur Oxida techno Litho VLSI/	ity pros ation: blogies graph /ULSI,	files. Kinema in VLS y: Pho Mask g	atics of I and U tolitho enerati	f silico (LSI, ch ography on.	odeling on diox naracte 7, E-be	g, tech kide gr rization <u>Unit-</u> eam li	nology rowth n of oxi <u>II</u> thogra	oration 7 and for, thi ide film phy an	: solic damag ick thi as, high nd new	l state e anne n and k and l wer lit	diffus aling, ultrath ow k di hograp	ion mo charac in film electric hy tec	odellin terizati ns, oxi cs for U <u>12 h</u> chniqu	g and ion of dation JLSI. urs es for
impur Oxida techno Litho VLSI/ Chem	ity pro: ation: blogies graph /ULSI, iical v	files. Kinema in VLS y: Pho Mask g apor d	atics of I and U tolitho enerati epositi	tion m f silico (LSI, cl ography on. on tec	odeling on diox naracte 7, E-be hnique	g, tech kide gr rization <u>Unit-</u> eam li es (CV	nology rowth nofoxi <u>II</u> thogra	oration 7 and for, thi ide film phy an VD tee	: solic damag ick thi as, high nd new	l state e anne n and k and l wer litt es for	diffus aling, ultrath ow k di hograp deposi	ion mo charac in film electric by tec tion of	odellin terizati ns, oxi cs for U 12 H chnique r polys	g and ion of dation JLSI. urs es for ilicon,
impur Oxida techno Litho VLSI/ Chem	ity pro: ation: blogies graph /ULSI, iical v	files. Kinema in VLS y: Pho Mask g	atics of I and U tolitho enerati epositi	tion m f silico (LSI, cl ography on. on tec	odeling on diox naracte 7, E-be hnique	g, tech xide gr rization <u>Unit-</u> eam li es (CV ilms, e	nology rowth nofoxi <u>II</u> thogra 7 D) : C pitaxia	oration 7 and for, thi ide film phy an VD tee	: solic damag ick thi as, high nd new	l state e anne n and k and l wer litt es for	diffus aling, ultrath ow k di hograp deposi	ion mo charac in film electric by tec tion of	odellin terizat ns, oxi cs for U 12 h chniqu chniqu	g and ion of dation JLSI. ITS es for ilicon, ogy
impur Oxida techno Litho VLSI/ Chem silicor	ity prot ation: blogies graph /ULSI, hical v n dioxid	files. Kinema in VLS y: Pho Mask g apor d de, silice	atics of I and U tolitho enerati epositi on nitri	tion m f silico (LSI, cl ography on. on tec de and	odeling on diox naracte 7, E-be hnique metal f	g, tech kide gr rization <u>Unit-</u> eam li es (CV ilms, e <u>Unit-</u>	nology owth nofoxi II thogra D): C pitaxia III	oration 7 and for, thi ide film phy an VD tec l growt	: solic damag ick thi ns, high nd new chniqu h of sil	l state e anne n and k and l wer litt es for icon: m	diffus aling, ultrath ow k di hograp deposi	ion mo charac in film electric hy tec tion of g and te	odellin terizati ns, oxi cs for U 12 H chnique polys echnolo 12 H	g and ion of dation JLSI. urs es for ilicon, ogy urs
impur Oxida techno Litho VLSI/ Chem silicor	ity prot ation: blogies graph /ULSI, nical v n dioxid	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi	atics of I and U tolitho enerati epositi on nitri tion :	tion m f silico (LSI, cl ography on. on tec de and Evapor	odeling on diox naracte 7, E-be hnique metal f	g, tech xide gr rization <u>Unit-</u> eam li es (CV ilms, e <u>Unit-</u> and sp	nology owth nofoxi II thogra /D) : C pitaxia III outterin	oration 7 and for, thi ide film phy an VD tec l growt	: solic damag ick thi ns, high nd new chniqu h of sil	l state e anne n and k and l wer litt es for icon: m	diffus aling, ultrath ow k di hograp deposi	ion mo charac in film electric hy tec tion of g and te	odellin terizati ns, oxi cs for U 12 H chnique polys echnolo 12 H	g and ion of dation JLSI. urs es for ilicon, ogy urs
impur Oxida techno Litho VLSI/ Chem silicor Metal interco	ity pro- ation: ologies graph (ULSI, ical v ical v dioxid film onnect:	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and m	atics of I and U tolitho enerati epositi on nitri tion : I ulti-lev	f silico ILSI, ch ography on. on tec de and Evapor rel meta	odeling on diox naracte , E-be <u>hnique</u> metal f ation a	g, tech kide gr rization <u>Unit-</u> eam li es (CV ilms, ep <u>Unit-</u> and sp on sche	nology owth nofoxi II thogra D): C pitaxia III outterin mes.	oration 7 and for, thi ide film phy an VD tech l growt	: solid damag ick thi as, high nd new chniqu h of sil	l state e anne n and k and l wer litt es for icon: m , failu	diffus aling, ultrath ow k di hograp deposi odelin re med	ion me charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys echnolo 12 h ns in,	g and ion of dation JLSI. mrs es for ilicon, ogy mrs metal
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm	ity pro: ation: ologies graph (ULSI, nical v n dioxid film onnect: na and	files. Kinema in VLS y: Pho Mask g apor d de, silice deposi s and mu rapid t	tolitho enerati epositi on nitri tion: 1 ulti-lev	tion m f silico (LSI, ch ography on. on tec de and Evapor rel meta l proce	odeling on diox naracte 7, E-be hnique metal f ation allizatio	g, tech kide gr rization <u>Unit-</u> eam lif es (CV ilms, e <u>Unit-</u> and sp pon sche PECVI	nology owth nofoxi II thogra D : C pitaxia <u>III</u> outterin mes. D, Plas	oration 7 and for, thi ide film phy an VD tea l growt ng tech ma etcl	: solid damag ick thi ns, high nd new chniqu h of sil	l state e anne n and k and l wer litt es for icon: m , failu: d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re med	ion me charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys echnolo 12 h ns in,	g and ion of dation JLSI. mrs es for ilicon, ogy mrs metal
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm	ity pro: ation: ologies graph (ULSI, nical v n dioxid film onnect: na and	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and m	tolitho enerati epositi on nitri tion: 1 ulti-lev	tion m f silico (LSI, ch ography on. on tec de and Evapor rel meta l proce	odeling on diox naracte 7, E-be hnique metal f ation allizatio	g, tech kide gr rization <u>Unit-</u> eam li es (CV ilms, ep <u>Unit-</u> and sp on sche PECVI arious f	nology owth nofoxi II thogra D): C pitaxia III outterin mes. D, Plas films fo	oration 7 and for, thi ide film phy an VD tea l growt ng tech ma etcl	: solid damag ick thi ns, high nd new chniqu h of sil	l state e anne n and k and l wer litt es for icon: m , failu: d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re med	ion me charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys cchnolo 12 h ns in, TP tech	g and ion of dation JLSI. urs es for ilicon, ogy urs metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for ann	ity prot ation: ologies graph /ULSI, nical v n dioxid film onnects nealing	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and mu rapid th g, growt	tolitho enerati epositi on nitri tion : 1 ulti-lev herma	tion m f silico (LSI, cl ography on. on tec de and Evapor el meta l proce epositi	odeling on diox naracte /, E-be metal f ation allization ssing: on of va	g, tech kide gr rization <u>Unit-</u> eam li es (CV ilms, e <u>Unit-</u> and sp pon sche PECVI arious f <u>Unit-</u>	nology owth n of oxi II thogra D): C pitaxia III outterin mes. D, Plas films fo IV	oration 7 and for, thi ide film phy an VD tea l growt ug tech ma etcl or use in	: solid damag ick thi is, high nd new chniqu h of sil niques ning an n ULSI	l state e anne n and k and l ver litt es for icon: m , failu d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re med echniq	ion mo charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys echnolo 12 h ns in,	g and ion of dation JLSI. urs es for ilicon, ogy urs metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for and	ity pro- ation: ologies graph (ULSI, iical v; n dioxid film onnect; na and nealing ess inte	files. Kinema in VLS y: Pho Mask g apor d de, silice deposi s and mu rapid t	tolitho enerati epositi on nitri tion : 1 ulti-lev herma h and d	tion m f silico (LSI, ch graphy on. on tec de and Evapor rel meta l proce epositi	odeling on diox naracte , E-be metal f ation ation ation ssing: on of va gration	g, tech kide gr rization <u>Unit-</u> eam li eam li es (CV ilms, ep <u>Unit-</u> and sp on sche PECVI arious f <u>Unit-</u> for NM	nology owth nofoxi II thogra D): C pitaxia III outterin mes. D, Plas films fo IV 10S, C	oration 7 and for, thi ide film phy an VD tech l growt ng tech ma etcl or use in	: solid damag ick thi is, high nd new chniqu h of sil niques ning an n ULSI	l state e anne n and k and l wer litt es for icon: m , failu d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re mec echniq cuits.	ion mo charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys cchnolo 12 h ns in, TP tech	g and ion of dation ILSI. ITS es for ilicon, ogy ITS metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for and	ity pro- ation: ologies graph (ULSI, iical v; n dioxid film onnect; na and nealing ess inte	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and mu rapid t g, growt	tolitho enerati epositi on nitri tion : 1 ulti-lev herma h and d	tion m f silico (LSI, ch graphy on. on tec de and Evapor rel meta l proce epositi	odeling on diox naracte 7, E-be hnique metal f ation ation ation ssing: on of va gration ductior	g, tech kide gr rization <u>Unit-</u> eam li eam li es (CV ilms, ep <u>Unit-</u> and sp on sche PECVI arious f <u>Unit-</u> for NM	nology owth of oxi <u>II</u> thogra II thogra III outterin mes. D, Plas films fo IV 4OS, C test tree	oration and for, this ide film phy an VD tea l growt ag tech ma etcl or use in CMOS a nds in V	: solid damag ick thi is, high nd new chniqu h of sil niques ning an n ULSI und bip VLSI te	l state e anne n and k and l wer litt es for icon: m , failu d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re mec echniq cuits.	ion mo charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys cchnolo 12 h ns in, TP tech	g and ion of dation JLSI. urs es for ilicon, ogy urs metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for and	ity pro- ation: ologies graph (ULSI, iical v; n dioxid film onnect; na and nealing ess inte	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and mu rapid t g, growt	tolitho enerati epositi on nitri tion : 1 ulti-lev herma h and d	tion m f silico (LSI, ch graphy on. on tec de and Evapor rel meta l proce epositi	odeling on diox naracte 7, E-be hnique metal f ation ation ation ssing: on of va gration ductior	g, tech kide gr rization <u>Unit-</u> eam lir es (CV ilms, e <u>Unit-</u> and sp pon sche PECVI arious f <u>Unit-</u> for NM n and la	nology owth of oxi in of oxi in of oxi in thogra II thogra II outterin mes. D, Plas films for IV 1OS, C test tre ENDE	oration and for, this ide film phy an VD tea l growt ag tech ma etcl or use in CMOS a nds in V	: solid damag ick thi as, high nd new chniqu h of sil ning an n ULSI und bip VLSI te OKS	l state e anne n and k and l wer litt es for icon: m , failu d RIE t	diffus aling, ultrath ow k di hograp deposi odelin re med echniq cuits. gy.	ion mo charac in film electric bhy tec tion of g and tec chanisr	bdellin terizations, oxi cs for U 12 h chnique polys cchnolo 12 h ns in, P tech 10 h	g and ion of dation JLSI. urs es for ilicon, ogy urs metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for and for and for and 1. The	ity pro- ation: ologies graph (ULSI, nical v n dioxid film onnect: na and nealing ss integ nce Mu	files. Kinema in VLS y: Pho Mask g apor d de, silico deposi s and mu rapid th g, growt gration OS tech	atics of I and U tolitho enerati epositi on nitri tion : I ulti-lev herma h and d : Proce	tion m f silico (LSI, ch ography on. on tec de and Evapor rel meta l proce epositi ess integ y: Intro-	odeling on diomaracte naracte /, E-be hnique metal f ation ation ation illization ssing: on of va gration ductior REC	g, tech kide gr rization <u>Unit-</u> eam lif es (CV ilms, e <u>Unit-</u> and sp on sche PECVI arious f <u>Unit-</u> for NM and la	nology owth nofoxi II thogra II thogra III outterin mes. D, Plas films fo IV 1OS, C test tre ENDE	oration 7 and for, thi ide film phy an VD tech g tech ma etcl or use in CMOS a nds in V	: solid damag ick thi as, high nd new chniqu h of sil ning an n ULSI und bip VLSI te OKS	l state e anne n and k and l wer litt es for icon: m , failu d RIE t olar circ	diffus aling, ultrath ow k di hograp deposi odelin re med echniq cuits. gy. P	ion mo charac in film electric why tec tion of g and tec chanism ues, RT	bdellin terizations, oxi cs for U 12 h chnique polys cchnolo 12 h ns in, P tech 10 h	g and ion of dation JLSI. Irs es for ilicon, ogy Irs metal niques
impur Oxida techno Litho VLSI/ Chem silicor Metal interco Plasm for and for and Proce Adval	ity pro- ation: ologies graph /ULSI, nical v. nical nical nical nical nical nical nical nical nical nical nical nical nical ni	files. Kinema in VLS y: Pho Mask g apor de de, silice deposi s and ma rapid th g, growt gration DS tech Title ce and I	atics of I and U tolitho enerati epositi on nitri tion : I ulti-lev herma h and d : Proce nology Engine	tion m f silico (LSI, ch ography on. on tec de and Evapor rel meta l proce epositi ess integ y: Intro- ering o tion	odeling on diomaracte naracte /, E-be hnique metal f ation ation ation illization ssing: on of va gration ductior REC	g, tech kide gr rization <u>Unit-</u> eam lif es (CV ilms, e <u>Unit-</u> and sp on sche PECVI arious f <u>Unit-</u> for NM and la	nology owth nofoxi II thogra II thogra III outterin mes. D, Plas films fo IV 1OS, C test tre ENDE	oration / and for, this ide film phy an VD tea l growt ng tech ma etcl or use in CMOS a nds in V CD BOO Author	: solid damag ick thi as, high nd new chniqu h of sil ning an n ULSI und bip VLSI te OKS	l state e anne n and k and l wer litt es for icon: m , failu d RIE t olar circ echnolo	diffus aling, ultrath ow k di hograp deposi odelin re med echniq cuits. gy. P	ion mo charac in film electric why teo tion of g and te chanism ues, RT ues, RT ues, RT	bdellin terizations, oxi cs for U 12 h chnique polys cchnold 12 h rs in, P tech 10 h er y Press	g and ion of dation JLSI. Irs es for ilicon, ogy Irs metal niques

							EEC-6								
			L			Т				Р			Credi	ts	
			3			0				0			3		
		Sessio											50		
						on Mar						50			
<u>Cours</u> Objec		introdu charact	iction to	o differ on tech	ent clas niques	ses of r	nanoma ed in Na	terials. anotech	Basic l	cnowled	lge on v	gy, giv various rted. Stu	synthe	sis and	
Cours Outco		2. Acqu 3. Deve	uire kno elop sin	owledge nple nat	e of nan noscale	o-partie models	cle synt s to inte	ology a thesis a prpret th vire met	nd their e behav	physica	al prope	erties. al syste	ms.		
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	3	3	2	1	2	1	1	0	0	0	2	2	3	
CO2	2	2	2	2	1	2	1	1	3	0	0	2	1	3	
CO3	2	2	2	1	2	3	3	1	2	0	0	2	2	3	
CO4	2	2	2	1	1	2	2	1	1	0	1	0	1	3	
						<u>Unit-</u>	I						12	hrs	
Applie scienc	cations	sciences: Applie		of nan	nology	ology ir	n differ					nplicati e, textile	e and m	nedical	
scienc Semic chemic Semic transfo Semic gap ser Dopin	cations es onduc cal met onduc ormatic onduc miconc g: Elec		o parti verse m o parti tons, ba o parti anopart nescen	of nand icles sy nicelles icles- s and-gap icles_a icles_succe, barr	nology otechno nthesis , electro ize–dej o variati pplicat urface-1	<u>Unit-</u> S: Clustro-depos penden ions-qu <u>Unit-</u> ions: C trap pas nanopa	in different in different er comp sition, p it phys antum of it phys antum of antum of a	ent area pounds yrolytic ical pro confine lumines n in corr asers, do	as of fo , quant c synthe opertice ment. scence e-shell oping n	od, agri um-dot esis, sel es: Melt and flu nanopa anopart	s from f-assen ting po orescen rticles,	MBE a mbly stra int, soli	e and m 12 h nd CV ategies id-state 12 h n direction	nedical Irs D, wet phase Irs t band on.	
Semic chemic Semic transfo Semic gap ser Dopin	cations es onduc cal met onduc ormatic onduc miconc g: Elec	tor nan hods, re tor nan ons, exci tor nan luctor na ctrolumi	o parti verse m o parti tons, ba o parti anopart nescen	of nand icles sy nicelles icles- s and-gap icles_a icles_succe, barr	nology otechno nthesis , electro ize–dej o variati pplicat urface-1	Diogy ir Unit- Cluste D-depos penden ions-qu <u>Unit-</u> ions: C trap pas nanopat	in different in different er comp sition, p it phys antum of it phys antum of antum of a	ent area pounds oyrolytic ical pr confine lumines n in cor asers, do on form	as of fo , quant c synthe opertice ment. scence e-shell oping n	od, agri um-dot esis, sel es: Melt and flu nanopa anopart	s from f-assen ting po orescen rticles,	MBE a mbly stra int, soli	e and m 12 h nd CV ategies id-state 12 h n direction	nedical Irs D, wet phase Irs t band on. sphors,	
Semic chemic Semic transfo Semic gap ser Dopin light er Semic nanow Physic	cations es onduc cal met onduc ormatic micond g: Elec mission onduc rires, po cal met	tor nan hods, re tor nan ons, exci tor nan luctor na ctrolumi	o parti verse m o parti tons, ba o parti anopart nescen ndirect s nowires icon, na nert gas	of nand icles sy nicelles icles- s and-gap icles, su ce, barr semicon s: Fabr anobelt s conder	nology otechno nthesis , electro ize-de ovariati pplicat urface-t iers to inductor ication s, nano nsation	Unit- Unit- Clusto o-depos penden ions-qu <u>Unit-</u> ions: C trap pas nanopas rs, light <u>I</u> strates ribbons , arc dis	n differ II er comp sition, p t phys antum of III Optical sivation rticle la emission Unit-IV gies, q scharge	ent area pounds oyrolytic ical pro- confine lumines n in corra sers, do on form <u>V</u> uantum springs. , RF-pla	as of fo , quant c syntho opertic ment. scence e-shell oping n . Si Nan a cond asma, p	od, agri um-dot esis, sel es: Melt and flu nanopart odots. uctance	s from f-assen ting po orescen rticles, N icles, N	e, textile MBE a nbly stra int, soli nce from carrier Mn-Zn-s ts in so	e and m 12 h nd CV ategies id-state 12 h n direction Se phose 12 h emicon	nedical Irs D, wet phase Irs t band on. sphors, Irs ductor	
Semic chemic Semic transfo Semic gap ser Dopin light er Semic nanow Physic	cations es onduc cal met onduc ormatic micond g: Elec mission onduc rires, po cal met	tor nan hods, re tor nan ons, exci tor nan luctor na ctrolumi n from ir tor nan prous sil hods: In , laser p	o parti verse m o parti tons, ba o parti anopart nescen ndirect s nowires icon, na nert gas	of nand icles sy nicelles icles- s and-gap icles, su ce, barr semicon s: Fabr anobelt s conder	nology otechno nthesis , electro ize-de ovariati pplicat urface-t iers to inductor ication s, nano nsation	Unit- Unit- Clusto o-depos penden ions-qu <u>Unit-</u> ions: C trap pas nanopas rs, light <u>I</u> strates ribbons , arc dis	n differ II er comp sition, p t phys antum of III Optical sivation rticle la emission Unit-IV gies, q scharge	ent area pounds byrolytic ical pr confine lumines n in cor users, do on form <u>V</u> uantum springs. , RF-pla	as of fo , quant c synth opertic ment. scence e-shell oping n Si Nar o cond asma, p OKS	od, agri um-dot esis, sel es: Melt and flu nanopart odots. uctance	s from f-assen ting po orescen rticles, N icles, N	e, textile MBE a nbly stra int, soli int, soli nce from carrier /in-Zn-S ts in so nique, i	e and n 12 I nd CV ategies ad-state 12 I n direction Se phos 12 I emicon on sput	nedical Irs D, wether phase Irs t bandon. sphors, Irs ductor	
scienc Semic chemic Semic gap sen Dopin light en Semic nanow Physic laser a	cations es onduc cal met onduc ormatic miconce g: Elec mission onduc rires, po cal met blation	tor nan hods, re tor nan ons, exci tor nan luctor nan luctor nan tor nan prous sil hods: In , laser py	o parti verse m o parti tons, ba o parti anoparti nescen ndirect s icon, na nert gas yrolysis	of nand icles synicelles icles- s and-gap icles-a icles, succe, barr semicon s: Fabr anobelt s conder s	nology otechno nthesis , electro ize-de o variati pplicat urface-t iers to inductor rication s, nano nsation REC	blogy ir <u>Unit-</u> Clusta b-depose penden ions-qu <u>Unit-</u> ions: C trap pas nanopas rs, light <u>L</u> strateg ribbons , arc dis	n different II er comp sition, p at phys antum o III Optical sivation rticle la emission U nit-IV gies, q a, nano s scharge	ent area pounds oyrolytic ical pre- confine lumines n in cor- asers, do on form <u>V</u> uantum springs. , RF-pla	as of fo , quant c synthe opertic ment. scence e-shell oping n Si Nar n cond asma, p OKS or	od, agri um-dot esis, sel es: Melt and flu nanopa anopart odots. uctance lasma a	s from f-assen ting po orescen rticles, N c effect	e, textile MBE a nbly stra int, soli int, soli nce from carrier An-Zn-S ts in se nique, i Publi	e and n 12 I nd CV ategies ad-state 12 I n direction Se phos 12 I emicon on sput	nedical Irs D, wether phase Irs t bandon. sphors, Irs ductor	
scienc Semic chemic Semic gap sen Dopin light en Semic nanow Physic laser a	cations es onduc cal met onduc ormatic miconce g: Elec mission onduc rires, po cal met blation	tor nan hods, re tor nan ons, exci tor nan luctor na ctrolumi n from ir tor nan prous sil hods: In , laser p	o parti verse m o parti tons, ba o parti anoparti nescen ndirect s icon, na nert gas yrolysis	of nand icles synicelles icles- s and-gap icles-a icles, succe, barr semicon s: Fabr anobelt s conder s	nology otechno nthesis , electro ize-de o variati pplicat urface-t iers to inductor rication s, nano nsation REC	Diogy ir Unit- Clusto Dedepos penden ions-qu Unit- ions: C trap pas nanopat rs, light strates ribbons , arc dis	n different II er comp sition, p at phys antum of III Optical sivation rticle la emission Unit-IV gies, q s, nano s scharge IENDE	ent area pounds oyrolytic ical pro- confine lumines n in cor- asers, do on form <u>V</u> uantum springs. , RF-pla CD BOO Auth gh Nalv	as of fo , quant c synthe opertic ment. scence e-shell oping n Si Nar n cond asma, p OKS or	od, agri um-dota esis, sel es: Melt and flu nanopart odots. uctance lasma a	s from f-assen fing po orescen rticles, N e effect arc tech	e, textile MBE a mbly stra- int, soli nce fron carrier An-Zn-s ts in so nique, i Publi r Inc.	e and n 12 I nd CV ategies ad-state 12 I n direction Se phos 12 I emicon on sput	nedical ITS D, were phase ITS t bandon. sphors: ITS ductor	
scienc Semic chemic Semic transfc Bemic gap set Dopin light et Semic nanow Physic laser a 1. Enc	cations es onduc cal met ormatic ormatic micond g: Elec mission onduc vires, po cal met blation	tor nan hods, re tor nan ons, exci tor nan luctor nan luctor nan tor nan prous sil hods: In , laser py	o parti verse m o parti tons, ba o parti anopart nescen ndirect s icon, na nert gas yrolysis	of nand icles sy nicelles icles- s and-gap icles-aj icles, su ce, barr semicon s: Fabr anobelt s conder s chnolog	nology otechno nthesis , electro ize-de o variati pplicat urface-t iers to ication s, nano nsation REC	Diogy ir Unit- Clusta D-depose penden ions-qu Unit- ions: C trap pas nanopat rs, light Unit- ions: C trap pas nanopat rs, light COMM	n different II er comp sition, p at phys antum o III Optical sivation rticle la emission U nit-IV gies, q a, nano s scharge	ent area pounds oyrolytic ical pro- confine lumines n in cor- asers, do on form <u>V</u> uantum springs. , RF-pla CD BOO Auth gh Nalv	as of fo , quant c synthe opertic ment. scence e-shell oping n Si Nar n cond asma, p OKS or	od, agri um-dota esis, sel es: Melt and flu nanopart odots. uctance lasma a	s from f-assen ting po orescen rticles, N c effect	e, textile MBE a mbly stra- int, soli nce fron carrier An-Zn-s ts in so nique, i Publi r Inc.	e and n 12 I nd CV ategies ad-state 12 I n direction Se phos 12 I emicon on sput	nedical ITS D, were phase ITS t bandon. sphors: ITS ductor	
scienc Semic chemic Semic transfo Semic gap ser Dopin light er Semic nanow Physic laser a 1. Enc 2. Spr	cations es onduc cal met ormatic ormatic micond g: Elec mission onduc rires, po cal met blation	tor nan hods, re tor nan ons, exci tor nan luctor na tor nan luctor nar orous sil hods: In , laser py <u>Title</u> edia of N	o parti verse m o parti tons, ba o parti anoparti nescen ndirect s icon, na nert gas yrolysis	of nand icles sy nicelles icles- s and-gap icles-ap icles, su ce, barr semicon s: Fabr anobelt s conder s chnolog	nology otechno nthesis , electro ize-de ovariation pplicat urface-t iers to ication s, nano nsation REC gy hnolog	Unit- Unit- S: Cluster D-depose penden ions-qu Unit- ions-qu Unit- ions: Qu Unit- ions: C trap pas nanopar rs, light strategribbons , arc dis COMM Ha sy Bh	n different II er comp sition, p t phys antum of III Optical sivation rticle la emission Unit-IV gies, q scharge IENDE ari Sing harat Bl	ent area pounds oyrolytic ical pro- confine lumines n in cor- asers, do on form <u>V</u> uantum springs. , RF-pla CD BOO Auth gh Nalv	as of fo , quant c syntho opertic ment. scence e-shell oping n Si Nan a cond asma, p OKS or va	od, agri um-dot esis, sel es: Melt and flu nanopart iodots. uctance lasma a	s from f-assen fing po orescen rticles, N e effect arc tech	e, textile MBE a nbly stra int, soli nce from carrier An-Zn-S ts in se nique, i Publi r Inc. r Inc.	e and n 12 I nd CV ategies ad-state 12 I n direction Se phos 12 I emicon on sput	nedical Irs D, wether phase Irs t bandon. sphors, Irs ductor	

OEEC-622A Biomedical Electronics														
			L]	Biomec T	lical E	lectron	nics	Р			Credi	te
			3			0				0			3	1.5
		Sessio	nal Ma	ırks		-				-			50	
		End S	emeste	r Exar	ninatio	on Mar	·ks						50	
Cours Object		underl constru	ying p actiona tanding	orincip and f	le of function	electro nal det	-physi ails of	ologic the dif	al sign ferent		asurer dical e	nent a quipme	nd an ent as v	well as
Cours Outco		fair 2. Far inc ana 3. Co det 4. Co	r under miliariz luding alysis. nceptu cails of nceptu llfuncti	standir ze with under alize u biomec alize oning c	ng abou n const lying p nderly lical eq signal of phys	it anato ruction princip ing tec juipmen proces iologic	my and hal and le of e hnolog nt. ssing t al syste	l physic functi electro- y with technic ems of	ology c ional d physio regard ques in human	n extra body.	n body of man signa nstructi acting	: i-instru l meas onal ar	ment s ureme	system
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	1	1	1	0	0	2	3	3	3
CO2	2	3	3	3	3	1	2	1	2	0	2	3	3	2
CO3	2	0	0	3	3	3	3	1	1	0	1	3	3	2
CO4	3	2	2	2	3	0	1	1	2	0	1	3	3	3
						<u>Unit-</u>	I						10	hrs
for bio propag	omedi gation	instrun cal apj of act iochem	plication po	ons, so otential	ources s, bio	of bic	pelectri c poter	ic pote	entials,	restir	ig and	action	n pote ric po	entials, tential
													14 k	
conditi amplifi record	ioners ier an ers, e	record pream d drive lectroc raphy, c	plifier er stag ardiog	s, bion e, wri raph, y	nedical ting sy vector	signa stems, cardic meter	l analy inkjet ograph s, spiro	vsis tec t recor , phon	chnique ders, j locardi	es, sign potentio ograph	al pro ometric , elec	cessing c recon troence	g techr rders, ephalo	niques, digital graph,
						<u>Unit-</u>	III						12 ł	irs
operati	ional c	aging s letails o onance	f X-ray	y mach	ine, X-	ray cor	nputed	l tomog	graphy,	nuclea	r medi	cal ima	iging s	
						<u>Unit-</u>	IV						12 I	ırs
system channe	, imp el tele table	y: Phys lantable emetry telemet	e units, systen	, applic n, mul	cations ti-char	in pat	ient ca rireless	telem	l monit netry s	toring, ystem,	wirele multi	ss teler -patier	metry, nt tele	single metry,

	RECOMMENDED BOOKS	
Title	Author	Publisher
1. Biomedical Instrumentation and Measurements	Leslie Cromwell, Fred J. Weibell and Erich A. Pfeiffer	Pearson Prentice Hall2006
2. Introduction to Biomedical Equipment Technology	Joseph J. Carr and John M. Brown	Pearson Education India, 2001
3. Handbook of Biomedical Instrumentation	R. S. Khandpur	Tata-McGraw Hill Education, 2003

					Co		DEEC-6 System	522B Engine	ering					
			L			T	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>		Р			Credi	ts
			3			0				0			3	
		Sessio											50	
		End S	emeste	er Exar	ninatio	on Mar	:ks						50	
	CourseThe aim of this course is to understand the basic elements of control system and its illustrative examples, concept of servomechanism. This course will contain physical modeling of electric-mechanical system, finding the transfer function using block diagram reduction and signal flow graphs and analysis of steady state and transient state. To understand the concept of stability using various techniques such as Routh's Hurwitz criterion, root locus technique, Nyquist, bode plots and state space analysis.Course1.Understand basics of control system theory and its role in engineering design.													
Cours Outco		 Ex bel An Per 	plain c navior alyze t rform s	oncept of a sys ime do state va	of pole tem. main ai triable	es and z nd frequ analysi	zeros o uency o is of sy	f a tran lomain	sfer fu behav and es	role in e nction a ior of sy tablish	and the ystems.	ir effec	t on pł	-
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	0	0	0	1	2	0	1	2	3	3
CO2	3	1	1	1	0	0	0	1	1	0	0	1	3	2
CO3	3	3	2	2	0	0	0	1	0	0	0	1	3	2
CO4	3	3	3	1	0	1	1	1	0	0	2	2	3	2
						<u>Unit-</u>	I						12	hrs
loop co motor, equatio mecha System	ontrol conce ons fo nical a n resp	n: Intro system pt of tra r linear nalogie onse: T	with b insfer f electr es. signa	lock di unction ical, m al flow main a	agrams n, chara nechani graphs nd freq	s and il acteristical, th block <u>Unit-</u> uency	lustrati ic equa ermal, diagra <u>II</u> domain	ive exa tions, p hydra m simp n respo	mples, ohysica ulic an olificati	AC and l syster d pneu on for l	d DC s m mode imatic inear sy	ervomo eling, fo system ystems.	otors, s ormula is, elec <u>12 F</u> rder sy	tepper tion of etrical- nrs stems.
		specific roller, r				and fre	equenc						S.	
						<u>Unit-</u>							14 ł	
magni	tude	nalysis: versus n, lead,	phase	angle	plot,	bode p	olots,	Nyquis				-		ý U
						<u>Unit-</u>	IV						10 ł	irs
transfe	er func	ble ana etion fro	om stat	e varia	ible rep	present	ation,	solutio	n of st					

RECOMMENDED BOOKS										
Title Author Publisher										
1. Modern Control Engineering	Ogata K	Prentice Hall, 5th Edition 2010								
2. Automatic Control Systems	Kuo BC	Prentice Hall, 9th Edition 2014								
3. Modern Control Systems Engineering,	Nagrath I J and Gopal M	New age international, 3rd Edition, 2014.								
4. Linear Control System	B S Manke	Khanna Publishers, 12th edition								

					E	O lectron	EEC-6 nic Syst		esign					
			L			Т	v		8	Р			Credit	ts
			3			0				0			3	
		Sessio											<u>50</u>	
		End S	emeste	r Exar	ninatio	on Mar	:ks						50	
<u>Cours</u> Objec		design compo amp to	an ele onents y o solve tanding	ectronic will be these g the c	e circui explai proble lesign	t. Desi ned. Pr ems w of hea	gning roblem ill be t sink,	of vari s in the explair and in	ous po e trans ned. Th nporta	wer su istor an nis is r	nply c nplifier necessa	ications ircuits. and he ry and ding. It	Select ow to u essent	ion of use op tial in
Cours Outco		amp 2. Des	lifiers ign and lress de lyze an	etc. l develo sign ch id desig	op linea nalleng gn diffe	ar and v es for a erent ba	ariable mplifie se driv	e power ers usin e circu	supply g trans its.	y. istor ar	nd op-an	s like p mps.	ower s	upply,
	DOI	DOA		-					-	n Outc		DOIO	DCOI	DGOO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	
CO1	2	2	2	2	0	0	0	1	0	0	1	1	1	3
CO2	2	3	3	3	2	2	1	1	2	0	2	3	3	2
CO3	3	3	3	2	0	2	3	1	0	0	3	3	3	3
CO4	3	2	1	2	0	0 Unit-		1	1	0	1	2	2 14	2
data sh by usir various migrat Power operati short c adjusta	s CMG ion of supp supp	cuit de nd spec se types OS and 5V to 3. ly desig Zener protect bltage re	ification of corr TTL 1 3V low gn tech regulation, fo	ons of v nponer ogic do voltag nnique	various nts, unc evices. ge supp s: Reg nsistor protec	passiv lerstand CMOS lies. <u>Unit-</u> ulated series tion ci	e and a ding ar S/TTL <u>II</u> and ur voltag rcuit, I	active c ad inter interfa uregula e regul C volta	ted por ator, tr	wer sup ransisto	besign c heets a benefits oply, co or Shur s, fixed	of electrind speces and condition of the second sec	tonic conic conic conic conic conic conic conic conic contract for the second s	ircuits ons of ges on rs proper ulator, lators,
power	suppry	y and SN	MPS.			TI	111						13 h	
transis differe	tor an nce b	design of the second se	? Tran voltag	sistor ge and	audio powei	power ampli rations	: Basic ampli ifiers,	fier, si	nall si	gnal a	nd larg	ge sign	al amp alysis	r, how plifier, using
						<u>Unit-</u>	<u>1V</u>						10 h	rs
mecha	nisms ls, sigi	d groun for coo nal grou	ling, b	asic the	ermal c	alculat	tions, h	leat sin	k selec	tion, a	nd heat	sink d	esign. S	Safety

RECO	MMENDED BOOKS	
Title	Author	Publisher
1. Electronic Instrument Design, 1st edition	Kim R. Fowler	Oxford University Press.
2. Digital Design Principles& Practices, 3rd edition	John F. Wakerly	Prentice Hall
3. Practical Analog Design Techniques	Adolofo Garcia and Wes Freeman	Seminar Materials
4. The Art of Electronics	Paul Horowitz	Cambridge University Press, 2011

					Сс	P ontrol S	EEC-6		ering					
			L			Т			0	Р			Credi	ts
			3			0				0			3	
		Session			•	Ъл							<u>50</u>	
		End So											50	
Cours Objec	 illustrative examples, concept of servomechanism. This course will contain physical modeling of electric-mechanical system, finding the transfer function using block diagram reduction and signal flow graphs and analysis of steady state and transient state. To understand the concept of stability using various techniques such as Routh's Hurwitz criterion, root locus technique, Nyquist, bode plots and state space analysis. Understand basics of control system theory and its role in engineering design. 													
Cours Outco		 Extended belt Ann Per 	plain c navior alyzet rform s riable r	oncept of a sys ime don state va epreser	of pole tem. main an iriable ntation	ontrol sy es and z nd frequ analysi and tran	veros o uency o is of sy nsfer fu	f a tran lomain stems inction	sfer fur behav and est s.	nction a ior of sy tablish	and the ystems. relation	ir effec	t on pł	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12	PSO1	PSO2
C01	3	102	2	3	103	0	0	100	2	0	2	0	3	3
CO2	3	2	1	1	1	0	0	1	1	1	1	0	3	2
CO3	3	3	2	2	1	0	0	1	0	0	1	0	3	2
CO4	3	3	3	1	1	1	1	1	0	3	2	0	3	2
			5	1	-	Unit-	_		v	-	_	0	-	hrs
loop co motor, equatio mecha	ontrol conce ons fo nical a	n: Intro system pt of tra r linear nalogie	with b insfer f electr es. signa	lock di unctior ical, m al flow	agrams n, chara nechani graphs	s and ill icteristical, th block	lustrati ic equa ermal, diagra <u>II</u>	ve exa tions, p hydrau m simp	mples, hysica ulic an lificati	AC and l syster d pneu on for l	d DC so n mode imatic inear sy	ervomo eling, fo system ystems	otors, s ormula is, elec 12 h	tepper tion of etrical-
		onse: T												
1		specific roller, r									-		,	PI, PD
						Unit-	III						12 k	nrs
magni	Unit-III12 hrsStability analysis: Pole-zero location and stability, Routh-Hurwitz criterion, root locus, log. magnitude versus phase angle plot, bode plots, Nyquist criterion for stability, necessity of compensation, lead, lag and lead-lag compensation networks.12 hrs													
						<u>Unit-</u>	IV						12 k	nrs
transfe	er func	ble ana etion fro y, state sj	om stat	e varia	ible rep	present	ation, s	solutio	n of st					

RECO	MMENDED BOOKS	
Title	Author	Publisher
1. Modern Control Engineering	Ogata K	Prentice Hall, 5th Edition 2010
2. Automatic Control Systems	Kuo BC	Prentice Hall, 9th Edition 2014
3. Modern Control Systems Engineering,	Nagrath I J and Gopal M	New age international, 3rd Edition, 2014.
4. Linear Control System	B S Manke	Khanna Publishers, 12th edition

			Tel	ecomn	nunica		EEC-6 vitchin		ems ar	nd Netv	vorks			
			L			Т				Р			Credi	ts
		<u> </u>	3			0				0			3	
		Session			• • •		.1						<u>50</u>	
<u> </u>		End So						0	•. • •			. 1	50	
<u>Cours</u> Objec		transm networ	ission ks, cha or desig	, desig arging gn of sw	gning and ro	of mu uting p	ltistag lans. 7	e netw	vorks, urse en	g syste signali nphasis space o	ing teo on dif	chnique fferent	es, dif techno	ferent
Cours Outco		digi 2. Exp swi 3. Des 4. Ana 5. Per	itizatio plain th tching. sign mu alyze th form c	n. e work ilti-stag ne signa juantita	ting pri ge swite Illing te utive n	inciple ching st echniqu	of swi tructure tes and tement	tching es invo develo of tele	system lving ti op the n	and as ns invol me and umberi unicatio	ved in space	telecon switchi chargir	mmuni ng stag ng plan	cation ges.
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	1	0	0	1	0	0	1	3	3	1
CO2	3	3	3	3	1	0	0	1	1	0	1	2	2	3
CO3	3	2	0	0	2	2	2	1	0	0	2	3	2	3
CO4	3	3	3	3	0	1	1	1	1	0	2	2	2	1
CO5	3	2	0	0	1	3	3	1	0	0	3	3	2	2
						Unit-	Ι						12	hrs
Switch divisio switch switch Speec	hing s on swi ling, t ing. h digit	nication ystems: tching, ime m ime m ization	Strong time ultiple: & tra	ger sw divisio xed sp	itching n swit ace sv	, syster ching witchin <u>Unit-</u> uantiza	ns, cro –time .g, tim <u>II</u> tion nc	ss bar divisio e mul	switch n spac tiplexe mpand	ing, ele e swite ed time ing, dif	ectronic ching, e switc	e swite time d ching, al codin	hing – livisior combin 12 h	space n time nation nrs coders,
-		h codes		0		<u>Unit-</u>							12 h	
switch comme Contre	ing hi on cha ol of	neering erarchy nnel. switchi all type o	and ro ng sys	outing, tems:	transm Call p	d block iission rocessi	ting pro plans a	and sys	stems, s	signalli	ng tecl	nniques	scriber s, in ch red pro	loops, annel, ogram
						<u>Unit-</u>	IV						12 h	rs
		etwork and nur												

RECOMMENDED BOOKS		
Title	Author	Publisher
1. Telecommunications Switching, Traffic and Networks	Flood J E	Pearson education Asia, (2001).
2. Telecommunication Switching Systems and Networks	Viswanathan T	PHI, India, (2003).
3. Signaling in Telecommunication Networks	Bosse J G van, Bosse John G	Wiley, John & Sons, (1997).
4. Switching in IP Networks: IP Switching, Tag Switching, and Related Technologies	Bruce S. Davie, Paul Doolan, Yakov Rekhtor	Elsevier Science & Technology Books, (1998)
5. Switching and Traffic Theory for Integrated Broadband Networks	Joseph Yu Hui	Kluwer Academic Publishers, (1990).

				I	MOS E	P Device	EEC-6 Physic		Modell	ing				
			L			Т	e/			P			Credi	ts
			3			0				0			3	
		Sessio											50	
		End So	emeste	r Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec			nic cir nents, j ns. The	cuit. It probler course	includ ns in tl e empha	les des he trans asis on	igning sistor a designi	of var mplifie ng of h	ious po er and l eat sink	ower su how to x, impor	upply c use op	amp t	select o solve	ion of these
Cours Outco		 Det Ap Ap Contract Transform Extension 	rive mo ply diff mpute ansistor tract va un and	dels fo erent S termina model rious d source	r the be PICE tr al voltag evice p series re	havior cansisto ge and paramet	of the effort mode current ters like ces.	lectrica ls for ci charac e effect	l device ircuit an teristic ive cha	stors, M es basec nalyses. s for M .nnel le	l on fun OS tran ngth, th	damen nsistors	using	SPICE
			Map	oing of	Cours	se Outo	comes	with P	rogran	n Outc	omes	-	_	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	1	0	1	0	0	0	1	3	2
CO2	3	3	3	3	3	2	2	1	0	0	1	2	3	2
CO3	3	2	1	2	3	1	1	1	1	0	2	2	1	3
CO4	3	2	2	3	3	1	2	1	1	0	1	1	1	3
C05	3	2	3	3	3	0	0	1	0	0	1	2	2	2
000		-		5		Unit-	, v	-			1	<u> </u>		hrs
T 4		Circ		: M	OGEE		_	1	1-1					
Intro	lucuo	n: Circ	un des	ign, M	USFE.			and mo	del pa	rameter	rs, inter	rconne		
						<u>Unit-</u>							12 k	irs
		stor str ments, N												
						Unit-	III						12 k	irs
		itor: M			with z			ero bas	sic-V c	urves,	anomal	lous C-	V curv	ves,
		-				Unit-	IV						12 k	irs
		SFET r ions, LI				n, basio	c conce	1			1	ons, LE		
					REC	COMM	ENDE	D BO	OKS					
		Title						Auth	or			Publis	her	
1. Fun	damer	ntal of N	Iodern	VLSI	Design	Yu	an Tau	r, Tak I	H Ning		ambrid)11	ge Univ	versity	Press,
2. CM	OS Di	gital Int	tegrate	d Circu	iits	Su	ng-Mo	Kang		Та	ita McO	Graw H	[i1]	
-	eration nsistor	and Mo	odelling	g of the	e MOS	Ya	nnis Ts	sividis		0	xford U	Jnivers	ity Pre	SS

	PCEC-623 Linear Integrated Circuit Lab													
			L			Т				Р			Credit	ts
			0			0				2			1	
<u>Cours</u> Objec		This lab includes complete analytical as well as designing circuits using op-amp. It includes design of various applications using op-amp as integrator, differentiator, log, antilog and wave generation circuits.												
<u>Cours</u> Outco		1. Exar 2. Desi 3. Desi 4. Desi	gn of v gn diff	arious erent w	applica ave ge	itions u neratin	sing op g circu	-amp.	U	vell as i mp.	n non-i	nvertin	ıg mode	es.
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	0	0	1	3	2	1	2	3	3
CO2	3	3	3	3	3	2	2	1	3	2	1	2	3	2
CO3	3	3	3	3	3	2	2	1	3	2	1	2	3	3
CO4	3	2	2	2	3	2	2	1	3	2	1	2	3	2
		• •	-	4	5	4	4	1	5	4	1	4	5	4

List of Experiments:

- 1. Design and analyze RC-circuit as low pass and high pass using active filters.
- 2. Design and analyze RC-circuit as low pass and high pass using passive filters.
- 3. Verify the differential amplifier configurations.
- 4. Measure the performance parameters of an op-amp.
- 5. Application of op-amp as inverting and non-inverting amplifier.
- 6. Verify the frequency response of an op-amp.
- 7. Use the op-amp as summing, scaling & averaging amplifier.
- 8. Use the op-amp as instrumentation amplifier.
- 9. Design and analyze differentiator and integrator using op-amp.
- 10. Application of op-amp as log and antilog amplifier.
- 11. Application of op-amp as saw tooth wave generator.
- 12. Application of op-amp as Schmitt Trigger.
- 13. Design and analyze multivibrator circuits using 555.
- **14.** To examine the operation of a PLL and to determine the free running frequency, the capture range and the lock in range of PLL.

	PCEC-624																						
	Fiber Optics Communication Lab																						
]	L		T	2		P			Cred	its											
			0		0)		2			1												
		Sessiona	l Marks	6			•				50												
		End Sen	nester E	xamina	tion Ma	rks					50												
Cours Objec	<u>etives</u>	The aim of this course is to study and understand the practical aspects of advanced communication system and optical fiber. It also gives the insight into various optical nonlinearities in optical communication and their mitigation. Finally, it will provide platform for the student to design and evaluation of modern optical communication networks, wireless communication network and OFDM.																					
<u>Cours</u> Outco		 Enab Abili Capa 	gation. I les the ir ity to mo I ble to int	nplemen del and a tegrate v	ntation o analyze t vireless	of optical the optic technolo	l fiber co al comm ogy with	ommunic nunicatio optical	cation lin on system commur	nk. m for hig nication	gher data	rate.											
		Ι	Mapping	g of Cou	irse Out	tcomes	with Pro	ogram (Dutcom	es		Mapping of Course Outcomes with Program Outcomes											
	DOA																						
	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12																					
CO1	2	PO2 3	3	3	3	1	PO7 0	PO8 1	3	2	PO11 1	2											
CO2	2 2	3	3 3	3	3 3	1 1	0 2	1 1	3	2 2	1	2 3											
CO2 CO3	2 2 2	3 3 3	3 3 3	3 3 3	3 3 3	1 1 3	0 2 0	1 1 1	3 3 3	2 2 2	1 1 1	2 3 2											
CO2	2 2	3	3 3	3	3 3	1 1	0 2	1 1	3	2 2	1	2 3											
CO2 CO3 CO4	2 2 2 of Expe To stu Desig syste	3 3 1 eriments: udy the eff gning of a	3 3 3 fect char n intensi	3 3 3 acteristi ty modu	3 3 3 cs of Ma ilator us	1 3 3 ach-Zeno ing Lith	0 2 0 2 der modu	1 1 1 ulator in bate Ma	3 3 3 Opti-sy ch-Zehr	2 2 2 stem. nder mod	1 1 1 dulator i	2 3 2 3 n Opti-											

- 4. Characterization of laser diode and photodetector using simulator/light runner.
- 5. Characterization of the electrical parameter of the intensity modulator using Opti-System.
- 6. Measurement of attenuation in optical fiber using Opti-System simulator and light runner.
- 7. Measurement of dispersion in optical fiber using Opti-System simulator and light runner.
- 8. Minimization of the effect of dispersion in optical communication link.
- 9. Evaluation of power budget of an optical fiber link using Opti-System simulator and light runner.
- 10. Designing of a DWDM point-to-point link using Opti-system.
- 11. To study the effect of channel spacing and operating bit rate in DWDM optical network.
- 12. To study the effect of four-wave mixing in DWDM network in Opti-system.
- 13. To study the effect of cross-phase modulation in DWDM network in Opti-system.
- 14. Designing of an all-optical wavelength convertor using Opti-system.
- 15. Experimental study of SMF cutting and splicing.
- 16. Demonstration of SMF connection.
- 17. Designing of external metal deposition-based PCF-SPR sensor model.
- 18. Modelling of spectroscopy-based sensing setup for liquid analytes.

	TPID-621 Industrial Training (4 weeks)													
			L			Т			,	Р			Credit	ts
			0			0				40			2 (S/US	5)
Cours Objec		The main objective of industrial training is to familiarized students with industrial working environment and enhance their knowledge skills towards developing a holistic perspective to understand various practical issues and latest trends in the field. The students will be able to troubleshoot various engineering faults related to their respective fields. They will be able to learn ethical management practices.												
Cours Outco		2: cor 3: ach	olemen relate ti ieve a oretica	t the teo he theo long-t l and pr	chnical oretical erm go racticir	skills a concep oal of ng engin	as an indots with transfo neers.	dividua the rea rming	al and in Il-life in themse	n team. ndustria elves in	al envir nto an	onmen optim	t. um ble	end of
			Mapp	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2	2	3	3	3	1	3	3	1
CO2	3	2												
CO3	3	3	<u>3 2 3 2 2 2 2 1 3 1 3 3 3</u>											
CO4	1	1	1	1	1	1	1	1	3	3	1	3	1	3

PCEC-711 Digital Signal Processing L T P Credits														
														ïS
		<u> </u>	3			0				0			3	
			nal Ma			- Mar							<u>50</u>	
0						on Mar							50	
<u>Cours</u> Objec		discre Impler	te Fou mentati oncept	rier troin tri	ansfor design	m (D) ning of	FT) an FIR ar	nd fas nd IIR :	t Four filters a	ier tra and rea	insform lization	n (FF n of the	Z-trans () met eir struc will al	thods. tures.
	Course 1. Analyze linear time invariant systems. Outcomes 2. Compute Z-transform, DFT and FFT of discrete time signals. 3. Understand the concepts of multirate signal processing. 4. Design digital filters using standard techniques. Mapping of Course Outcomes with Program Outcomes													
									-					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	0	0	1	0	0	1	1	2	3
CO2	3	3	3	3	3	0	1	1	2	0	0	2	2	3
CO3	3	3	3	3	2	1	1	1	1	0	1	2	1	3
CO4	2	3	3	3	2	1 Unit-	0	1	0	0	2	3	3 10	3
applic sinuso system	ations; oidal ar ns, ana	n: Adv basic e d harm lysis of f discret	lement onicall f discre	s of dig y relate te-time	ital sig d com syste	nal pro plex- e	cessin xponer	g syster ntial sig	ms, cor gnals, re	ncept of eview o	f freque	ency in ete-tim	discret le signa	e time lls and
				_		Unit-	II						16 h	rs
Discre relatio filterin	rties of e te Fo onship ng, filf	n: Int Z trans urier tr of DFT tering c ing deci	form, a ansfor with other of long	nalysis m (DF her trar seque	and ch (T): In sforms ences.	aracter troduct s, prope efficier	istics o tion to erties o nt com on in fi	of LTI sy DFT, i f DFT, o putatic	ystems nverse circulation of t	using 2 DFT, 1 r convo the DF	Z-trans DFT as plution, T, fast	forms. a line use of	DFT in	sform, linear sform
Implementation of discrete time system: Structures for the realization of discrete-time systems, structure for FIR & IIR systems, fixed point and floating-point representations, effects of coefficient unitization, effect of round off noise in digital filters, limit cycles. Design of digital filters: General consideration, linear phase FIR filters, design methods for FIR filters using windows, IIR filter design by impulse invariance, bilinear transformation and matched Z-transformation.														
						Unit-	IV						06 h	rs
Multirate signal processing: Introduction, interpolation and decimation. Wavelet theory: Short time Fourier transform (STFT), Continious wavelet transform (CWT), Discrete wavelet transform (DWT) and Haar wavelet.														

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Discrete Time Signal Processing, 3rd Edition 2014	Oppenheim A V & Sehafer R W	Prentice Hall									
2. Digital Signal Processing, 4th Edition 2006	Proakis J G & Manolakis D G	Pearson									
3. Signal & Systems, 2nd Edition 2009	Oppenheim A V, Willsky A S & Young I T	Wiley Eastern Ltd N. Delhi									
4. Digital Signal Processing, 4th Edition 2013	S.K Mitra	Tata Mc-Graw Hill									

	PCEC-712 Antenna and Wave Propagation L T P Credits													
									0					ts
		C	3			0				0			3	
		Session			ninatio	on Mar	·ks						<u>50</u> 50	
Cours	60							tion nr	inainla	anta		daman		d thair
Objec		basic p also be	aramet discus	ters. Va sed. Tł	rious a ne wave	lerstand ntenna e propa ropaga	s, array gation	rs and th will en	heir spe able the	ecial fea	atures a	and app	lication	ns will
Course Outcomes1. Understand radiation principles and various antenna parameters.2. Describe the atmospheric and terrestrial effects on radio wave propagation.3. Gain knowledge of wire radiators, various special antennas and their applications.4. Synthesize antenna arrays and analyze their radiation patterns.												15.		
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	2	1	2	0	1	3	2	2
CO2	3	3	3	2	3	3	1	1	1	0	2	3	2	3
CO3	3	3	2	2	2	1	2	1	2	0	1	3	2	3
CO4	3	2	2	3	3	1	2	1	2	0	2	2	3	2
						<u>Unit-</u>	I						12	hrs
effecti back ra Radia	ive heig atio, ra ition p ion fro	radiation ght, reci diation rinciple om a ha	iprocity power es: Ret	y theored density arded y	em, sel 7. vector j	f-impeo potentia	dance, al, isoti ver rac	mutual	imped	ance, r s, near	adiation field an	n resist nd far f	ance, fi ield co	ncept, liation
linear Specia antenr antenr	wire el al ante na, frec	ors: Vol ements nnas: A quency their ad ennas.	, Hertz Apertur indepe	dipole e anten ndent	antenn inas, E antenn	a, mono & H -p as, log	opole ra lane ho period	adiator orn ante ic ante	s, reson ennas, j enna, ai	nant an pyrami ntenna	d non-r dal hor measu	esonan n, lens rement	t anten and ret s, mici	nas. flector rostrip
						<u>Unit-</u>	III						12 h	irs
multip	Antennas array: Introduction, linear uniform arrays of isotropic sources, principles of pattern multiplication. broadside arrays, end fire arrays, array pattern synthesis, uniform array, binomial array, Chebyshev arrays.													
						<u>Unit-</u>	IV						12 h	irs
Propagation of radio waves : Structure of ionospheric region, different modes of propagation: ground waves, space waves, space wave propagation over flat and curved earth, optical and radio horizons, surface waves and troposphere waves, wave propagation in the ionosphere, critical frequency, maximum usable frequency (MUF), skip distance, virtual height, radio noise of terrestrial and extraterrestrial origin, effect of earth's curvature, duct propagation, troposphere scatter propagation.														

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. Antennas	Kraus	Mc Graw Hill								
2. Antennas	Balanis	Mc Graw Hill								
3. Antenna and Wave Propagation	K D Parsad	Parkash Publications								
4. Electromagnetic Waves and Radiating Systems	K. G Balmain, E. C Jordan	РНІ								

							EEC-7							
			L			<u>Mic</u> T	roelect	tronics		Р			Credi	ts
			3			0				0			3	
		Sessio	nal Ma	rks									50	
		End S	emeste	r Exar	ninatio	on Mai	·ks						50	
<u>Cours</u> Objec		proces step of	s of thi fabrica	ck film ation fr	, thin f om cry	ilm and stal gro	l hybrio owth to	d IC's. photol	It also a lithogra	iscuss aims to aphy to earning	unders manuf	tand ea	ich and g and t	l every o hav
Course 1. Understand the physical and electrical properties of semiconductor materials and their use in microelectronic circuits. 2. Gain knowledge about fabrication process and challenges. 3. Describe various VLSI fabrication tools and techniques. 4. Process integration for NMOS, CMOS and bipolar circuits. Mapping of Course Outcomes with Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	0	0	1	0	1	3	0	2	2
CO2	3	1	3	2	3	0	3	1	0	0	2	0	2	3
CO3	3	2	2	1	0	0	0	1	0	2	3	0	3	3
CO4	3	2	2	1	0	0	0	1	1	2	3	0	1	2
						<u>Unit-</u>	I						10	hrs
		n: Cou assifica			,									
						Unit-	II						10 h	irs
infrast Oxida dioxid	ructur tion: e grov	owth: 1 e, advar Surface wth for ion of o	passiv , thick	OS clea ation thin a	aning, g using (and ult	getterin oxidatio trathin	ng etc. on, dry films,	v oxida Oxida	tion, v tion te	vet oxi echnolo	dation,	kineti	cs of S	Silicor
						<u>Unit-</u>	III						14 h	irs
Lithography: Photo reactive materials, types of photoresists, pattern generation and mask-making, pattern transfer, lithography process steps. Diffusion and ion implantation: Interstitial diffusion, substitutional diffusion, interstitially diffusion, diffusion equation, Fick's first law and second law, ion implant distribution, penetration range, nuclear stopping, electronics stopping, implantation damage and annealing. Epitaxy and thin film deposition: Historical development and basic concepts, chemical vapour deposition (CVD), atmospheric pressure chemical vapour deposition (APCVP), vapour phase epitaxy (VPE), liquid phase epitaxy (LPE), molecular beam epitaxy (MBE),														
						Unit-	IV						14 h	irs
Etching: Historical development and basic concepts, wet etching, selectivity, isotropy and etch bias, common wet etchants, orientation dependent etching effects. Metal film deposition : Evaporation and sputtering techniques, Failure mechanisms in, metal interconnects and multi-level metallization schemes.														

RECOMMENDED BOOKS												
Title	Author	Publisher										
1. The Science and Engineering of Microelectronic Fabrication	Stephen A. Campbell	Oxford University Press										
2. Fundamentals of Semiconductor Fabrication	S. M. Sz	Wiley, 2003										
3. Introduction to Microelectronic Fabrication	Richard C Jaeger	Prentice Hall, 2002										

				0) ptoele	ectroni	EEC-7 cs Devi		d Circ	uits				
			L			T				P			Credi	ts
		Sagio	3			0				0			3	
		Session	emeste		ninatio	n Mar	·ks						<u>50</u> 50	
Cours	20							:1:00	ith the	design		tofor		ronio
<u>Objec</u>		device optoele comm	es and ectroni	circui cs devi on syst	ts by ces. In	using pleme	different different	ent des approa	sign te ach of c	chnolo optoele uation	ogies u ctronic	ised fo s devic	or desi es in m	gn o noderi
Course Outcomes1. Use principles of physics to analyze the fundamental concepts of various optoelectronic components.2. Describe the characteristics of optoelectronic devices. 3. Familiarize with tools and processes used in fabricating optoelectronic components. 4. Utilize knowledge to implement optoelectronic communication systems.														
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	2	2	3	3	3	0	2	1	0	2	3	0	2	3
CO2	3	3	3	3	3	2	0	1	2	2	3	0	2	3
CO3	3	3	2	2	3	0	1	1	2	2	3	0	2	3
CO4	3	3	3	3	2	1	2	1	2	2	3	0	1	3
						<u>Unit-</u>	I						10	hrs
		n: Sen ics, adv			-		ork, mil		-		-		14 h	
semico condit design Optoe absorp	onduct ion, w is, char electro ption, o at inter	onic so for injec- vaveleng racterist nic det quantum rnal gai ns	ction 1 gth tun ics, mo cectors n effic	aser & able la dulatic Introd iency,	tits va asers, 1 on respo duction respon	arious LED p onse of n, devic sivity,	structu ower a can LEI ce type wavele e, photo	and eff D. es, basi ength o	ijection iciency c princ cut-off	n laser y, heter cipal or , types	charae rojunct f optoe of phe	cteristic ion, L electror otodioo	cs, thro ED str nic dete des wit	esholo ucture ection th and noise
n. '				4	o			-4:	. 1	/ 1*	4 T			
Passive network components & sensors: Introduction, couplers/splitters, WDM multiplexers, demultiplexers, filters, isolators, circulators, attenuators, electro-optic modulators, acousto-optic modulators and their application areas, optical sensors: classification-point, distributed, intensity, phase & spectral. smart structures & applications Optical amplifiers and integrated optics: Introduction, semiconductor optical amplifiers (SOA), erbium-doped fiber amplifiers (EDFA), fiber Raman amplifiers (FRA), application areas of optical amplifiers, some integrated optical devices, OEICs, optical bi-stability and digital optics, optical computation.														
						Unit-	IV						12 h	irs
	Optoelectronic integrated circuits: Introduction, hybrid and monolithic integration, application of opto electronic integrated circuits, integrated transmitters and receivers, guided wave devices.													

RECOMMENDED BOOKS												
Title	Author	Publisher										
1. Semiconductor Optoelectronic Devices	Pallab Bhattacharya	Pearson Education Inc										
2. Photonics - Optical Electronics in Modern Communications	A. Yariv and P. Yeh,	Oxford University Press										
3. Opto Electronics – As Introduction to materials and devices	Jasprit Singh	McGraw-Hill International										
4. Opto Electronics – An Introduction	J. Wilson and J. Haukes	Prentice Hall, 1995										

				Co	ompute		EEC-7	/11C cation of	&Netw	orks				
			L		1	Т				Р			Credit	S
			3			0				0			3	
			nal Ma										<u>50</u>	
~		End S	emeste	r Exar	ninatio	on Mar	'KS						50	
<u>Cours</u> Objec			rk topo								ks, tran asic lay			
Cours Outco														rk.
			Map	ping of										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	3	3	2	1	1	0	1	2	0	1	2	2	2
CO2	3	2	3	3	2	2	2	1	0	0	2	2	1	2
CO3	1	3	3	2	0	1	1	1	1	0	2	2	1	2
CO4	3	3	3	3	0	1 Unit-	1	1	2	0	2	3	2 12	2
extran Physic media Data I link co multic	cal lay cal lay and sv link lay ontrol, cast rou		a and si a and si , netwo n access	ignals, rk laye s contro	compa digital er: Intro ol, ethe	rison of <u>Unit-</u> and an <u>Unit-</u> oductic rnet, ar <u>Unit-</u>	f OSI a <u>II</u> alog tra <u>III</u> on to da nd othe <u>IV</u>	nd TCF ansmiss ta link r netwo	P/IP. sion, ba layer, e orks, ne	andwid error de twork	th utiliz tection layer pr	zation, and corrotocols	12 h transm 14 h rrection s, unica 12 h	rs ission rs 1, data st and rs
	sport la	ayer an			layer	: Proce	ss to p	rocess	deliver	y: TCF	and U	DP, ap	plicatio	on
	protoco	01S, F I F	, 111 11		REC	OMM	ENDE	D BO	OKS					
	protoco	Title	, 111 11		REC	COMM	ENDE	CD BO Auth				Publi	sher	
layer j							ENDE	Auth		4	th Ed.,			-Hill.
layer j 1. Dat	ta Com	Title	tion an			В.	A. For	Auth	ior		th Ed., th Ed.,	Tata M	[cGraw	

1012 * 1010					-									
					Micro		EEC-7 & Rad		ineeri	ıg				
			L			Т				P			Credit	ts
		~	3			0				0			3	
		Session			•		,						50	
		End S	emeste	r Exar	ninatio	on Mai	rks						50	
Course ObjectivesThe aim of this course is to understand the basic concepts and app microwave and radar. This course enables students to have fundament of microwave components and circuits and to learn the principle of the 										ental u f transi	ndersta missioi	anding n lines		
<u>Cours</u> Outco		mi 2. Ac	croway quire k alyze t scribe	ve comp nowled he perf various	oonents lge of r ormano scanni	s, devic nicrow ce char ing and	es and ave and acterist trackin	their ch d radar tics of r ng tech	naracte device nicrow niques	ristics s and th ave and used in	eir cha d radar s radar.	racteris	stics.	ige of
							comes							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11	PO12		PSO2
CO1	3	3	2	3	1	3	2	1	2	0	1	3	2	2
CO2	3	3	3	3	2	3	2	1	1	0	1	3	3	2
CO3	3	3	2	3	3	3	2	1	2	0	2	3	2	1
CO4	3	3	3	3	3	3	2	1	2	2	1	3	2	1
						<u>Unit-</u>	I						12	hrs
wave g detecto loop d parame	guides or mou irectio eters, 1	compo basic o ints, ma onal cou microwa ulti cavi	concep gic tee plers, t ave tub	ts and freque wo-ho es- Pro	proper ency m le direc oblem v	ties, fe eter, ca ctional with co	errite d vity res couple nventio	evices, sonator er, phas	, farada , micro se shift besat m	ay rota wave f ers, atte nicrowa	tion, is ilters, c enuator ave frec	olators lirectio s, intro juencie	, circu onal cou oductio	lators, uplers, on to S
						Unit-	II						12 h	irs
diode, amplif measu	Gunr fier, C remen	devices di diode, deneral t, atten t of Q of	avala measu uation	nche d iremen meas	liode, 1 it setu uremer	IMPAT p with nt, mea	T dioc micro asurem	le, TR owave ent of	APPA7 bench VSW	diode , meas R, me	e, PIN sureme asurem	diodes nt dev	s, para vices, j	metric power
						<u>Unit-</u>	III						12 h	irs

Introduction to radar systems Basic principle, block diagram, operation and applications of radar, radar range equation, CFARs pulse repetition frequency and range ambiguities, **Doppler radar:** Doppler effect, moving target indicator (MTI) radar, delay line cancellers, blind speeds, multiple or staggered pulse repetition frequencies, range gated doppler filters, block diagram of digital signal processor, pulse doppler radar, non-coherent MTI; basic CW radar, FMCW radar, multiple frequency CW radar: block diagram and operation for the measurement of range

Unit-IV 12 hrs										
Radar Systems : Radar transmitters, basic configurations: self-excited power oscillator, master oscillator power amplifier (MOPA), comparison of tubes for radar transmitters, modulators, pulse forming network, block diagram of radar receiver, mixers, duplexers, displays Tracking and scanning : tracking with radar, sequential lobbing, conical scanning, block diagram and operation, simultaneous lobing or monopulse tracking radar, amplitude comparison monopulse radar, block diagram and description for one angular coordinate and two (angular azimuth and elevation) coordinates, phase comparison monopulse radar.										
RECO	OMMENDED BOOKS									
Title	Author	Pub	lisher							
1. Microwave and Radar Engineering	M Kulkarni	Umesh Public	ations, Delhi							
2. Foundation of Microwave Engg	R. E. Collin	Tata McGraw	Hill							
3. Introduction to Radar Systems	Skolnik, M.	Tata McGraw	-Hill, 2001							
4. Microwaves K C Gupta New Age International										
5. Elements of Electronic Navigation SystemsN. S. NagarajaTata McGraw-Hill, 2000										
6. Introduction to Radar Engineering	Sen & Bhattachrya	PHI								

						DI	EEC- 7	/1 2 R						
				Сог	nputei	Archi			Organi	sation				
			L		_	Т			_	Р			Credi	ts
		~ •	3			0				0			3	
		Session			•	•							<u>50</u>	
						on Mar							50	
Cours						ndation hical n								
<u>Objec</u>	uves					y. The c								
						ixed po								
		of the p				1					1			1
Cours	se	1. Re	cognize	e the arc	chitectu	res of p	rocesso	orsused	l in con	puting	system	s.		
Outco						er instr								
			-			signing					-	-		
		4. Ev	aluate c	quantita	tive pe	rformar	nceofc	ompute	er syste	ms and	memor	у.		
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	0	1	1	1	0	0	2	2	3	2
CO2	2	3	3	3	0	1	2	1	2	0	0	3	3	2
CO3	2	0	0	3	0	3	3	1	1	0	2	2	2	3
CO4	3	2	2	2	0	0	1	1	2	0	1	3	2	2
						<u>Unit-</u>	I						10	hrs
	epres	ferent ty e ntation n.			ber rep			xed and	d floati	ng-poir	nt repre	sentatio		
						<u>Unit-</u>							14 h	
		n structi metic, lo												
		process										uters, n	150 15	CSIC,
e abre p		p100000				Unit-			• • • • • • • • • • •				14 h	irs
Fyeeu	tion u	nit: Intr	oductio	n gen	eral rec			hinatio	nal shi	fter des	ion fla	a regis		
		nteger ac												
shift-a	nd-add	l, booth	multip	lier, ca	rry sav	e multij	plier, d	ivision	- non-	restorin				
		arithme												
		unit de							ired and	d miero	progra	ammed	design	
арргоа	icnes, d	case stud	ay - des	sign of	a simpl	• •		CPU.					141	
Marria						<u>Unit-</u>			1		- f		14 h	
		ganizati gn, cone												
		ctions,												
	-	agemen	-		0 2	,	Ŀ	<i>, , , , , , , , , ,</i>			J 7			
Periph	ieral d	evices a	and the	ir char										
		nemory		d I/O, I	O tran	sfers - p	orogran	n contro	olled, ii	nterrup	t driven	and D	MA, so	ftware
interru	pts and	lexcepti	ions.		DEC	COMM	FNDE		OKE					
		Title			NEC			Autho				Publi	sher	
1. Con	nputer	Organiz	zation a	ınd		Carl		char, Zv			5th Edi			-Hill,
		l System				1		d Safw			2002			

						Indust	EEC-7 rial El		ics											
			L			Т				Р			Credi	ts						
		C •	3			0				0			3							
		Session End S		arks er Exar	ninatio	m Mar							<u>50</u> 50							
C																				
<u>Cours</u> Objec		charac	teristic s inclu	s of po	wer se	micono	ductor	devices	s and fi	undame	entals c	of powe	f the operating f power convert nd ac/ac ues used in po							
<u>Cours</u> Outco		ele 2. Lea 3. An	ctronic arn the alyze s	es. charac single p	teristic hase ar	s of pov nd three	wer sen phase	nicond power	uctor sy	s and t witches ter circ cial and	s. uits and	d their a	applica	tions.						
										n Outc										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12								
CO1	1	3	3	3	2	1	0	1	1	0	1	1	1	1						
CO2	2	2	1	2	2	0	2	1	2	0	0	2	1	1						
CO3	3	3	3	3	2	2	2	1	3	0	2	3	2	2						
CO4	3	3	3	3	2	2 Unit-	2	1	3	0	3	3	2	2 hrs						
modul Semic charac and pa	les. conducteristic arallel	wer ser etor sw cs, thyri connec ring circ	itching istor tu tions c	g devi rn-on r of SCR	ces : Renethod	eview s, thyri memb	of thy stor rate of communications of the store of the st	ristor, tings aı thyrist	two tr nd prot for fam	ansisto ection, nily-DL	r mode gate cl	el of S haracte	SCR an ristics,	nd V- series power						
phase	rectifie	fication ers, sem bedance	i conve	erters, f	full con	contro verters	ol, clas , freew	heeling	g diode	es, trans			se and	three						
						<u>Unit-</u>	III						12 h	rs						
comm	utated	ntroduc thyrist gle phas	or inve	erters,	voltage	-														
						Unit-	IV						14 h	irs						
chopp Cyclo	er circu -conve	Principl uits. erters: alf wav	Princi	ple of	cyclo-o	convert	er ope	ration,	step-u	p and s	tep do	wn cyc								

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. Power Electronics-Circuits, Devices and Applications	M H Rashid	PHI, 2nd Edition (1998).								
2. Industrial Electronics	G K Mithal	Khanna Publishers, Delhi, 18th Edition (1998).								
3. Industrial Electronics	S N Biswas	Dhanpat Rai and Company, Delhi, 3rd Edition (2000).								
4. Power Electronics	P S Bhimbra,	Khanna Publishers, Delhi, 3rd Edition (2002).								
5. Power Electronics	M D Singh, Khanchandani K B	TMH, 6th reprint (2001).								

							EEC-7 gital Sy							
			L				,itui > j			Р			Credi	ts
			3			0				0			3	
		Session			•								50	
		End So											50	
<u>Cours</u> Objec		compo softwa hardwa	n digit ries, ar nes wil s usin nent th re incl are des use of t	tal sys nd moc l then g prog nat inte uding cription	tem. T lern lo be disc gramma egrates logic s n langu	The congic development oussed able lo hands imulat lage (V	urse de vices s and illu- ogic de -on ex ion, m /HDL/	eals w uch as ustrated vices. periend inimiza Verilog	ith sec field d throu The co ce with ation a g HDL	quentia progran gh case ourse 1 n mode nd an). The	l circu mmable studie nas an ern con introdu hands-	its, rar e logic es of m accom nputer- iction c on assig	ndom gates. ore co panyin aided of the gnmen	access State mplex ng lab design use of
<u>Cours</u> Outco		 Ass conf Perf Desi 	figurati `orm sta	e perf ons. atic tim digital	orman ing ana system	ce of lysis of using	a giv f the di VHDL	en dig gital ciu and Co	gital c rcuits/s ompare	ircuit ystems the per	5.	-		Moore digital
										n Outc				1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				PSO2
CO1	3	3	3	1	2	1	1	1	1	0	2	0	3	3
CO2	3	3	2	1	1	1	2	1	1	0	3	0	0	3
CO3	3	3	3	3	2	2	2	1	1	0	3	0	3	3
CO4	3	3	3	1	3	2 Unit-	2	1	1	0	3	0	2	3 hrs
PAL. Synch counte state as	ronou ers, Me ssignm	ombinat Is seque ealy state nents, sy les: The	ential of e diagra	circuit am, Mo	s: The	<u>Unit-</u> finite ate diag circuit	<u>II</u> state n gram, st	nachine ate trai	e, designsition	gn of s tables,	ingle 1 state re	nultime	12 H ode an n techr	n rs Id ring
						<u>Unit-</u>	III						12 k	ırs
tables,	state r	ous sequences of the se	ns and	row me	erging,	design	ofasyr	chrono	ous stat		diagra	ams, pr	rimitiv	e flow
						<u>Unit-</u>	IV						12 k	nrs
objects digital	s, clas desigi	n to VI ses and n entity ications	data t and arc	ypes, c hitectu	operato ral dec	rs, ove laration	erloadii	ng, log	ical op	erators	, VHD	L repr	esentat	tion of

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. An Engineering Approach to Digital Design	Fletcher William, I	3 rd Indian reprint, PHI, (1994).									
2. Digital Design	Morris Mano M	3 rd Edition, Pearson Education (2002).									
3. VHDL-Analysis and Modeling of Digital Systems	Navabi Z	McGraw Hill.									
4. Fundamentals of Logic Design	Charles H. Roth Jr	4 th Edition, Jaico Publishers (2002).									
5. VHDL for Programmable Logic	Skahill Kevin	1 st Indian Reprint, Pearson Education (2004).									
6. Verilog HDL: A Guide to Digital Design and Synthesis	Samir Palnitkar	2 nd Edition, Prentice Hall PTR									

			L			T		Embed		P	I		Credi	te
			3			0				0			3	15
		Sessio	-	irks						0			50	
				r Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec			sizes o							ollers a ller sys				
<u>Cours</u> Outco		2. Dev 3. Und	elop pi lerstand	rogram d comn	ming s	kills of tion pro	f micro otocols	contro	ller.	ture and		-	rocess	ors.
		4. Design and develop embedded systems for real time applications. Mapping of Course Outcomes with Program Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2
CO1	2	2	3	3	3	2	2	1	2	0	1	3	2	2
CO2	3	3	2	1	2	0	0	1	2	2	2	3	2	3
CO3	3	3	3	2	2	1	1	1	1	0	1	3	2	3
CO4	0	0	0	0	3	3	0	1	3	0	2	2	3	2
		, v	0	U	0	Unit-		-		Ů	_		12	hrs
					control	ller, 32 <u>Unit-</u>	bit mic <u>II</u>	roconti	roller.			lbit mic	12 h	irs
single	bit ins	controll truction	ers: Pin is, addr	n descrivessing	control iption a modes	ller, 32 <u>Unit-</u> and arcl . I/O in	bit mic <u>II</u> hitectu structio uctions	re of 80	oller.)51 mic emory i	eroconti read/wr	roller, a	arithme y instru	12 h tic, log	gic and
single operat Embe in a sy proces	bit ins tions, c edded s stem, e ssors, c	controll truction	ers: Pin as, addr nal and design ed softv process	n descri essing un-cor : Proce ware in in emb	iption a modes nditiona ssor en a syste	ller, 32 Unit- and arcl . I/O in al instru Unit- nbedde em, and systen	bit mic <u>II</u> hitectur structions <u>III</u> ed into a embed n, form sem, ski	rocontr re of 80 ons, me s, basic a system lded system	noller. 051 mic emory r program m, emb stem of on of s	erocont: read/wr mming wedded l n chip. c	roller, a ite-onl concep hardwa comple design,	arithme y instru ots. are units x syste design	12 h tic, log actions 12 h s and d m desig	rs gic and stac rs evice gn and ss and ner.
single operat Embe in a sy proces desigr Comr paralle protoc	bit ins tions, c edded s stem, c ssors, c n exam nunica el devi	controll truction condition system embedde design p ple. class ation de ces port rallel bu	ers: Pin as, addr nal and design ed softworocess ssification evices t, soph	n descri ressing un-cor : Proce ware in in emb ion of e and pr isticate	iption a modes nditiona ssor en a syste bedded mbedd	Iler, 32 Unit- and arcl . I/O in al instru Unit- mbedde em, and systen led syst Unit- Is: I/O facing	bit mic <u>II</u> hitectur structions <u>III</u> ed into a embed n, form tem, ski <u>IV</u> types feature	rocontr re of 80 ons, me s, basic a system lded system lded system alization ill required and extension decompositions and extension	of 1 mic emory i program m, emb stem of on of s ired for cample evice d	erocontr read/wr mming bedded l n chip. c ystem c r an eml s, seria esign.	roller, a rite-onl concep hardwa comple design, bedded	arithme y instru- ots. ure units x syste design system nunica bus con	12 h tic, log ictions 12 h s and d m design proce design 12 h tion de mmuni	rs fic and stacl rs evices gn and ss and ner. rs evices cation
single operat Embe in a sy proces desigr Comr parallo protoc	bit ins tions, c edded s estem, c essors, c n exam nunica el devi col, par	controll truction condition system embedde design p ple. class ation de ces port rallel bu	ers: Pin as, addr nal and design ed softworocess ssification evices t, soph	n descri ressing un-cor : Proce ware in in emb ion of e and pr isticate	control iption a modes nditiona ssor en a syste bedded mbedd rotocol ed inter tocol-p	Iler, 32 Unit- and arcl . I/O in al instru- <u>Unit-</u> nbedde em, and systen led systen led systen led systen led systen led systen led systen	bit mic <u>II</u> hitectur structions <u>III</u> ed into a embed n, form tem, ski <u>IV</u> types feature comm	rocontr re of 80 ons, me s, basic a system lded system lded system alization ill required and extension decompositions and extension	n, emb stem or on of s ired for camplea	erocontr read/wr mming bedded l n chip. c ystem c r an eml s, seria esign.	roller, a rite-onl concep hardwa comple design, bedded	arithme y instru- ots. ure units x syste design system nunica bus con	12 h tic, log ictions 12 h s and d m design proce design 12 h tion de mmuni	rs fic and stacl rs evice gn and ss and ner. rs evices cation
single operat Embe in a sy proces desigr Comr paralle protoc	bit ins tions, c edded s estem, c essors, c n exam nunica el devi col, par	controll truction condition system embedde design p ple. class ation de ces port rallel bu	ers: Pin as, addr nal and design ed softworocess ssification evices t, soph	n descri ressing un-cor : Proce ware in in emb ion of e and pr isticate	control iption a modes nditiona ssor en a syste bedded mbedd rotocol ed inter tocol-p	Iler, 32 Unit- and arcl . I/O in al instru- <u>Unit-</u> nbedde em, and systen led systen led systen led systen led systen led systen led systen	bit mic <u>II</u> hitectu structions <u>III</u> ed into a embed n, form tem, ski <u>IV</u> types feature comm	rocontr re of 80 ons, me s, basic a system ided system ill requ and ex es in de nunication	n, emb stem or on of s ired for camplea	erocontr read/wr mming bedded l n chip. c ystem c r an eml s, seria esign.	roller, a rite-onl concep hardwa comple design, bedded	arithme y instru- ots. ure units x syste design system nunica bus con	12 h tic, log actions 12 h s and d m design proce design 12 h tion de mmuni I, PCI-	rs fic and stacl rs evice gn and ss and ner. rs evices cation
single operat Embe in a sy proces desigr Comr parallo protoc advan	bit ins tions, c edded s estem, c ssors, c n exam nunica el devi col, par ced bu	controll truction condition system (embedde design p ple. class ation de ces port rallel bu ses.	ers: Pinas, addr nal and design ed softworcess ssification evices t, sophilis device	n descri essing un-cor : Proce ware in in emb ion of e and pr isticate ces pro	control iption a modes nditiona ssor en a syste bedded mbedd rotocol ed inter tocol-p	Iler, 32 Unit- and arcl . I/O in al instru- Unit- mbedde em, and system led system led system led system led system led system led system comm	bit mic II hitectur structions III ed into a embed n, form tem, ski IV types feature comm ENDE A	rocontr re of 80 ons, me s, basic a system ided system ill required and extension de nunication	of ler. 051 mic emory i program m, emb stem of on of s ired for camples evice d ion net OKS	eroconti read/wr mming bedded l n chip. o ystem o r an eml s, seria esign. work u	roller, a rite-onl concep hardwa comple design, bedded 1 comr serial sing IS	arithme y instru- ots. ure units x system system munication bus con SA, PC.	12 h tic, log ictions 12 h s and d m design proce design 12 h tion de mmuni I, PCI-	rs fic and stacl rs evice gn and ss and ner. rs evices cation
single operat Embe in a sy proces desigr Comr parallo protoc advan	bit ins tions, c edded s estem, e ssors, c n exam nunica el devi col, par ced bu	controll truction condition system of embedde design p ple. class ation do ces port rallel bu ses. Title Microco	ers: Pinas, addr nal and design ed softworcess ssification evices t, sophilis device ontrollens	n descri essing un-cor : Proce ware in in emb ion of e and pr isticate ces pro	control iption a modes nditiona ssor en a syste bedded mbedd rotocol ed inter tocol-p	Iler, 32 Unit- and arcl. I/O in al instru- Unit- mbedde em, and system led system led system led system led system common COMM	bit mic II hitectur structions III ed into a embed n, form tem, ski IV types feature comm ENDE A	rocontr re of 80 ons, me s, basic a syster lded syster lded syster alizatio ill requ and ex es in de nunication CD BOO author i, JG N	of ler. 051 mic emory i program m, emb stem of on of s ired for camples evice d ion net OKS	edded l n chip. o ystem o r an eml s, seria esign. work u	roller, a rite-onl concep hardwa comple design, bedded 1 comr serial sing IS	arithme y instru- ots. ure units x system system nunication bus con SA, PC: Public	12 h tic, log ictions 12 h s and d m design proce design 12 h tion de mmuni I, PCI- sher tion	rs fic and stacl rs evice gn and ss and ner. rs evices cation

					11	liveloge	Com	munica	tion					
			L		•	T				Р			Credit	ts
			3			0				0			3	
			nal Ma										50	
		End S	emeste	er Exar	ninatio	on Mar	:ks						50	
<u>Cours</u> Objec		fading mobile	effects	. The e	mphastion an	is will	be to a	nalyze	differe	nt mod	impart l lulation CDMA	techni	ques us	ed for
<u>Cours</u> Outco		 Dis An An Dis 	alyze va	h betwe arious r ate betw	een diff nodula ween d	erent ty tion tec	pes of t hnique t multi	fading i s used i ple acc	n wirele ess tec	ess com hnique	munica munica s and u	tion.	and the	basic
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	0	0	1	2	0	1	0	0	3	2	3	2
CO2	1	2	3	3	1	2	0	1	1	2	2	2	2	2
CO3	3	2	1	2	2	2	1	1	1	1	2	3	2	2
001		1		0	1			1	0			2		2
CO4	2	2	0	. 0		2	0	1	I U	0	3	1 3	3	2
Introc wirele assign	ss cellu ment s	ular sys strategie	tem, m es, co-c	obile u channel	init, ba interf	Unit- systen se stati erence,	<u>I</u> ns: Cor on, mc detern	ncept of obile sv	f cellula vitching the fr	ar comr g centro equenc	3 nunicati e, frequ y reuse	ency re distai	euse, cl nce, ha	hrs sics of hannel nd-off
Introc wirele assign strateg splittin Mobil propag propag	Juction ss cellu ment s gies, int ng and s le radio gation gation	to wir ular sys strategic erference sectorin propa mecha models,	eless co tem, m es, co-c ce and s g. g. gation: nisms, signal	mmun obile u channel ystem c Introd reflect penetra	ication init, ba interf capacity uction ion, d	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build	I ns: Cor on, mc deterring effi II o wave on, sca dings, t	ncept of obile sv nining ciency, propag attering	f cellula vitching the fr improv ation, f	ar comr g centro equenc ving cap ree spa	nunicat e, frequ	ion sys ency re distant f cellulat agationt	12 tem, ba euse, cl nce, ha ar syster 12 h model odels, i	hrs sics of nannel nd-off m, cell rs , basic ndoor
Introc wirele assign strateg splittin Mobil propag propag	Juction ss cellu ment s gies, int ng and s le radio gation gation	to wir ular sys strategic erference sectorin propa mecha models,	eless co tem, m es, co-c ce and s g. gation: nisms,	mmun obile u channel ystem c Introd reflect penetra	ication init, ba interf capacity uction ion, d	Unit- systen se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq	I ns: Cor on, mc detern ing effi II o wave on, sca dings, t jues.	ncept of obile sv nining ciency, propag attering	f cellula vitching the fr improv ation, f	ar comr g centro equenc ving cap ree spa	nunicat e, frequ y reuse bacity of ce propagati	ion sys ency re distant f cellulat agationt	12 tem, ba euse, cl nce, ha ar syster 12 h model odels, i effects	hrs sics of nannel nd-off m, cell rs , basic ndoor due to
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim	luction ss cellu ment s gies, int ng and s le radio gation gation er sprea	to wir ular sys strategic erference sectorin propa mecha models, ad and d technic ft keyin	eless co tem, m es, co-c ce and s g. g. gation: nisms, signal elay spr uues: In	mmun obile u channel ystem c Introd reflect penetra read, di troduct	ication init, ba interf capacity uction to tion, d ation in versity	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear n odulati-	I ns: Cor on, model ing effi II o wave on, sca dings, to jues. III nodulation on tech perform	propag attering types of	f cellula vitching the fr improv ation, f g, outd f small	ar comr g centro equenc ving cap ree spa loor pr -scale f	nunicat: e, frequ y reuse bacity of ce propagati copagati cading, f	ion sys ency re distar f cellula agation fading ion mo	12 tem, ba euse, cl nce, ha ar syster 12 h model odels, i effects 12 h ing, Ga , perfor	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim of mod	Juction ss cellu ment s gies, int ng and s le radio gation gation er sprea lation uum shi dulation	to wir ular sys strategie erferend sectorin propa mecha models, ad and d technic ft keyin n schem	eless co tem, m es, co-c ce and s g. gation: nisms, signal elay spr lues: In g, sprea es, pow	mmun obile u channel ystem c Introd reflect penetra read, di troduct ad spect er spec	ication init, ba interf capacity uction to tion, d ation in versity ion to trum m trum an	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear m odulati- nd error <u>Unit-</u>	I ns: Cor on, mc deterring ing effi II o wave on, sca dings, to ues. III nodulation on tech perform IV	propag attering types of tion tec mance i	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin	ar comr g centro equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann	nunicat e, frequ y reuse bacity of ce prope copagati ading, f mum sh TH-SS sy	ion sys ency re distan f cellula agation fading ift key ystems	12 tem, ba euse, cl nce, ha ar syster 12 h model odels, i effects 12 h ing, Ga , perfor 12 h	hrs sics of nannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim of moc Wirel archite princij	luction ss cellu ment s gies, int ng and s le radio gation gation er sprea lation um shi dulation ecture, pov	to wir ular syss strategic erference sectorin o propa mecha models, ad and d technic ft keyin n schem mmuni radio su ver cont	eless co tem, m es, co-c ce and s g. gation: nisms, signal elay spr lues: In g, sprea es, pow cation	mmun obile u channel ystem c i Introd reflect penetra read, di troduct ad spect er spec stand m and c ects of r	ication init, ba interf capacity uction tion, d ation in versity trum m trum an ards: 1 hannel nultipa	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear n odulati- nd error <u>Unit-</u> Introdu types. of term ev	I ns: Cor on, model ing effi II o wave on, sca dings, to ues. III nodulate on tech perform IV cellular agation	propag attering types of tion tec mance i to GSN code c n on cod	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin M, GS livision le divisi and sta	ar comr g centre equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann M serv a multip	nunicat: e, frequ y reuse pacity of ce propagati copagati cading, f mum sh rH-SS sy nels.	ion sys ency re distant f cellula agation fading ift key ystems nd feat	12 tem, ba euse, cl nce, ha ar syster 12 h model odels, i effects 12 h ing, Ga , perfor 12 h ures, s	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs ystem stems:
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim of moc Wirel archite princij	luction ss cellu ment s gies, int ng and s le radio gation gation er sprea lation um shi dulation ecture, pov	to wir ular sys strategie erferend sectorin o propa mecha models, ad and d technic ft keyin n schem mmuni radio su ver cont ation wi	eless co tem, m es, co-c ce and s g. g. gation: nisms, signal elay sprea es, pow cation ibsyster rrol, effe	mmun obile u channel ystem c i Introd reflect penetra read, di troduct ad spect er spec stand m and c ects of r	ication init, ba interf capacity uction tion, d ation in versity trum m trum an ards: 1 hannel nultipa	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear m odulati- nd error <u>Unit-</u> Introdu types.	I ns: Cor on, model ing effi II o wave on, sca dings, to ues. III nodulate on tech perform IV cellular agation	ncept of obile sv mining ciency, propag attering types o tion tec mance i to GSN r code c n (LTE)	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin M, GS livision le divisi and sta OKS	ar comr g centre equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann M serv a multip	nunicati e, frequ y reuse bacity of ce propagati ading, f mum sh TH-SS sy tels.	ion sys ency re distant f cellula agation fading fading ift key ystems nd feat cess and	12 tem, ba euse, cl nce, ha ar syster 12 h models, i effects 12 h ing, Ga , perfor 12 h ures, s MA) sy d introd	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs ystem stems:
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim of mod wirel archite princij to thire	luction ss celli ment s gies, int ng and s le radio gation er sprea lation ium shi dulation ess co ecture, t ple, pov	to wir ular sys strategie erferend sectorin propa mecha models, ad and d technic ft keyin n schem mmuni radio su ver cont ation wi	eless co tem, m es, co-c ce and s g. gation: nisms, signal elay spr lues: In g, sprea es, pow cation ibsyster rol, effe	mmun obile u channel ystem c i Introd reflect penetra read, di troduct ad spect er spec stand n and c ects of r	ication init, ba interf capacity uction tion, d ation in versity trum m trum an ards: 1 hannel nultipa	Unit- system se stati erence, y, trunk to radic iffracti- to build techniq <u>Unit-</u> linear n odulati- nd error <u>Unit-</u> Introdu types. o th prop- term ev	I ns: Cor on, modility ing effi II o wave on, sca dings, tiges. III nodulation perform IV agation rolution IENDE	tion tec mance i propag attering types of tion tec mance i to GSM code c n (LTE) ED BO Auth	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin M, GS livision le divisi and sta OKS	ar comr g centre equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann M serv multip ion mul	nunicat: e, frequ y reuse bacity of ce propagati copagati cading, f mum sh H-SS sy iels.	ion sys ency re distant f cellula agation fading fading ift key ystems nd feat cess and cess and	12tem, baeuse, clnce, haar system12 hmodelodels, ifeffects12 hing, Ga, perfor12 hures, sMA) syd introdner	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs ystem stems: uction
Introd wirele assign strateg splittin Mobil propag propag Doppl Modu minim of mod Wirel archite princij to third	luction ss celli ment s gies, int ng and s le radio gation er sprea lation num shi dulation ess co ecture, : ple, pow d genera	to wir ular sys strategie erferend sectorin propa mecha models, ad and d technic ft keyin n schem mmuni radio su wer cont ation wi	eless co tem, m es, co-c ce and s g. gation: nisms, signal elay spr lues: In g, sprea es, pow cation lbsyster rol, effe reless n	mmun obile u channel ystem c i Introd reflect penetra read, di troduct ad spect er spec stand n and c ects of r	ication init, ba interf capacity uction tion, d ation in versity trum m trum an ards: 1 hannel nultipa	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear m odulati- nd error <u>Unit-</u> Introdu types. o th prop- term ev COMM	I ns: Cor on, mc deterring effinities ing effinities II o wave on, sca dings, t jues. III nodulate on tech perform IV ction tech cellulate olution iolution S Rapp	tion tec name i propag attering types of tion tec niques mance i to GSN code c n code n (LTE) ED BO Auth	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin M, GS livision le divisi and sta OKS	ar comr g centre equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann M serv multip ion mul ndards.	nunicati e, frequ y reuse bacity of ce prop- copagati fading, f mum sh TH-SS sy iels. vices ar ile access tiple access tiple access tiple access tiple access tiple access	ion sys ency re distant f cellula agation fading ion mo fading ift key ystems ift key cess and cess and Publish ducatio	12tem, baeuse, clnce, haar system12 hmodels, ifeffects12 hing, Ga, perfor12 hures, sMA) syd introderon, 200	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs ystem stems: uction 3.
Introc wirele assign strateg splittin Mobil propag propag Doppl Modu minim of moc Wirel archite princij to thire 1. Win 2. Prin Con	luction ss celli ment s gies, int ng and s le radio gation gation n er sprea lation num shi dulation ecture, s ple, pow d genera reless Conciples mmuni	to wir alar syst strategie erferend sectorin propa mecha models, ad and d technic ft keyin n schem muni radio su ver cont ation wi Title Commu of Mol cation	eless co tem, m es, co-c ce and s g. gation: nisms, signal elay spr lues: In g, sprea es, pow cation lbsyster rol, effe reless n	mmun obile u channel ystem c i Introd reflect penetra read, di troduct ad spect er spec stand n and c ects of r network	ication init, ba interf capacity uction tion, d ation in versity trum m trum an ards: 1 hannel nultipa	Unit- system se stati erence, y, trunk <u>Unit-</u> to radic iffracti- to build techniq <u>Unit-</u> linear m odulati- nd error <u>Unit-</u> Introdu types. o th prop- term ev COMM	I ns: Cor on, mc deterring effinities ing effinities II o wave on, sca dings, t jues. III nodulate on tech perform IV ction tech cellulate olution iolution S Rapp	tion tec mance i propag attering types of tion tec mance i to GSM code c n (LTE) ED BO Auth	f cellula vitching the fr improv ation, f g, outd f small hnique , DS-SS n fadin M, GS livision le divisi and sta OKS	ar comr g centre equenc ving cap ree spa loor pr -scale f s, minin S, and F g chann M serv multip ion mul ndards.	nunicat: e, frequ y reuse bacity of ce propagati copagati cading, f mum sh H-SS sy iels.	ion sys ency re distant f cellula agation fading ion mo fading ift key ystems ift key cess and cess and Publish ducatio	12tem, baeuse, clnce, haar system12 hmodels, ifodels, ifeffects12 hing, Ga, perfor12 hures, sMA) syd introdntrodntrod	hrs sics of hannel nd-off m, cell rs , basic ndoor due to rs ussian mance rs ystem stems: uction 3.

					Digi	F ital Sig	PCEC- mal Pr		ng Lab					
			L			Т				Р			Credit	ts
			0			0				2			1	
Course ObjectivesThis lab aims to get familiar the students about the software MATLAB and its use to verify various mathematical function i.e convolution, correlations as well as to design of various digital time causal systems. Later on, Students will learn how to design Low Pass, High Pass, Band Pass and FIR filter with the help of Matlab.														
<u>Cours</u> Outco		2. Veri 3. Des	fy varions fy varions for the second se	ous mat digital	hemati FIR ar	nd IIR 1	filters u	using d	ifferen	t appro			ir asso	ciated
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	0	0	1	3	2	1	1	1	3
CO2	3	3	3	3	3	0	1	1	3	2	1	1	2	2
CO3	2	3	3	3	2	1	0	1	3	2	1	2	2	3
CO4	3	3	3	3	2	1	1	1	3	2	1	2	1	2
		riment		1-41-1			1 1							

- 1. Write a program in Matlab to generate standard sequences.
- 2. Write a program in Matlab to compute power density spectrum of a sequence.
- 3. To write a Matlab program to verify correlation and autocorrelation.
- 4. Write a program in Matlab to verify linear convolution.
- 5. Write a program in Matlab to verify the circular convolution.
- 6. To write a Matlab programs for pole-zero plot, amplitude, phase response and impulse response from the given transfer function of a discrete-time causal system.
- 7. Write a program in Matlab to find frequency response of different types of analog filters.
- 8. Write a program in Matlab to design FIR filter (LP/HP) through Rectangular Window technique.
- 9. Write a program in Matlab to design FIR filter (LP/HP) through Triangular Window technique.
- 10. Write a program in Matlab to design FIR filter (LP/HP) through Kaiser Window technique.
- 11. Write a program in Matlab to find the FFT.
- 12. Implementation of low-pass, high pass and band-pass filter on some chosen signal.

						т		714						
					Ant	r enna a	PCEC- nd Mi		ve Lab					
			L			Т				Р			Credi	ts
			0			0				4			2	
Course ObjectivesThis lab aims to get familiarize the students about the various communication antennas used in microwave range. It includes their design, gain, directivity, VSWR and various other characteristics. Further in this lab students will attain the knowledge about operation of various Plane-Tee.														
Cours Outco		2. Mea 3. Anal	sure th lyze the ign an e	e impe e perfor efficien	rmance It anten	natchir waveg na for F	ng chara guide co RF and 1	acterist ompone microw	ics of a ents. vave fre	ers. ntenna equency n Outc	y range			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	3	2	0	1	3	2	1	2	1	3
CO2	2	2	3	3	3	2	0	1	3	2	1	2	2	2
CO3	3	3	3	3	2	2	1	1	3	2	1	3	1	3
CO4	3	3	3	2	3	2	2	1	3	2	1	3	2	2
List of 1. 2. 3.	To ur To in To kr	riments iderstan vestigat now the tivity in	d the w te the pr form c	ropertion of a Yag	es of a Y gi anter	Yagi an na and	tenna c l exami	ompris ne mul	ing a di					

- 4. To investigate the gain, and directivity of the log Periodic antenna over a wide frequency range.
- 5. To plot the radiation pattern of a directional antenna.
- 6. To measure antenna parameters (directivity, gain, beam width, half power beam width, front to back ratio) with polar plot of dipole antenna.
- 7. To measure antenna parameters of monopole antenna.
- 8. To measure antenna parameters of patch array antenna.
- 9. Identification of different waveguide components.
- 10. Study of the characteristics of klystron tube and to determine its electronic tuning range.
- 11. By use of slotted waveguide, to observe how the load impedance affects the VSWR.
- 12. To measure the VSWR of the antenna.
- 13. To determine the frequency & wavelength in a rectangular waveguide working on TE_{10} mode.
- 14. To be familiar with the operation of directional coupler.
- 15. To determine the standing wave-ratio and reflection coefficient.
- 16. To be familiar with the operation of E Plane-Tee.
- 17. To be familiar with the operation of H Plane-Tee.
- 18. To be familiar with the operation of Magic-Tee.
- 19. Measurement of the gain of horn antenna using Method of the two antennas.
- 20. To measure antenna parameters of horn (E, H, Pyramidal) & open waveguide antenna.
- 21. To measure antenna parameters of conical horn antenna.
- 22. To setup a satellite communication link.

					Pro	I oject St	PREC- tage I a		minar					
			L			Т				Р			Credi	ts
			0			0				4			2	
<u>Course</u> Object	_	foreru	nner to	the ful	l-fledg	ed proj	ject wo	rk to b	e taker	out a v subseciplinar	quently	/ in 7 th :		er.
Course Outco		 Sel gai soc Co Ide For Co 	lect a s ined fro ciety an llect an entify th rm a tea mmuni esentati	the intervention of the in	e projections ethical minate ern too distrib chnica ls with	courses respon- inform ls requi ute the l and go profess	ing use s with nation r red for work an eneral i sionalis	e of the the aw elated t the imp mong th informa sm.	e techr areness to selec plemen hemsel ation b	nical ar s of im eted pro- ntation of ves. y mean	pact of ject. of the pr is of ora	f techn roject.	ology	on the
			Mapp	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	1	2	2	2	3	2	2	3
CO2	1	3	2	2	3	0	0	3	3	2	2	0	1	2
CO3	3	3	3	3	3	2	3	3	3	3	3	0	2	3
CO4	2	1	0	2	3	3	0	1	3	3	2	3	3	2
CO5	1	1	2	3	2	0	0	3	3	3	2	0	1	2

					W		EEC-7 Senso	/21A r Netw	orks					
			L			T	Selise		UTIL S	Р			Credi	ts
			3			0				0			3	
		Session											50	
		End S	emeste	er Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		variou	s routi		tocols.					of wire en to s				
<u>Cours</u> Outco		1. 2. 3. 4.	Analy Under	ze and	simula lifferer	te diffe nt topol	erent ro ogies o	uting p	rotocol ess sen	nges for ls. sor netv		ss sens	ornetw	vorks.
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	1	1	1	1	0	0	2	3	3	2
CO2	3	3	3	3	3	1	1	1	1	0	2	2	2	2
CO3	3	2	1	2	3	1	1	1	1	0	1	2	2	2
CO4	2	2	0	0	3	1	1	1	1	0	2	3	3	2
						<u>Unit-</u>	I						12	hrs
Archi consui	tectur mptior	abling t es and of senserit, mac	netwo for nod	rking s	sensor vork ar	Unit- s: Sing chitect	<u>II</u> gle-nod ure - se	e archi	itecture					energy
0		-,	I ····			Unit-							12 h	irs
		tocols: I ting, un				outing	protoc	ols, cla	ssificat	tion of	routing	g protoc		
						<u>Unit-</u>	IV						12 h	irs
		v ork pla lotes, pi												dware
					REC	COMM	ENDE		OVO					
								D ROO	UKS					
		Title						Auth				Publi	sher	
1. Pro		Title and Arc Sensor N				Но			or	s Jo	ohn Wi			
1. Pro Wir 2. Wir	eless S	and Arc	Vetworl Vetworl	ks ks- An		Ho W Fe	olger K illig	Auth arl & A 10 & Le	o r Andreas		ohn Wi	ley,200		

					0		EEC-7							
			L		S	<u>atellite</u> T	Comr	nunica	tion	Р			Credi	ts
			3			0				0			3	
		Sessio											50	
		End S	emeste	r Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		design multip	. Stude le acce	ents wass tech	ill und niques	erstand	the r n satel	ole of lite con	variou	orbita is mod cation i	ulation	, mult	iplexin	g and
Cours Outco		2. con 3. tra 4.	ellites a Acqui mmuni Identi de-offs Asses	and ass ire kno cation. fy the encour s the a and app	ess laun owledg system ntered i inalog olicatic	nch me e abou s requi in the do and di ons of th	thods a t vario red by esign o gital te nose ne	a com fa syst tworks	nnologi ultiplex munica em. ogies u	ing teo tions s sed for	chnique atellite · satelli	es used to fund	d in sa	atellite nd the
	DOI	DOA								n Outc		DO1	DCOI	DCO
<u>CO1</u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2
CO1	2	2	2	2	2	0	1	1	0	0	2	3	1	1
CO2 CO3	3	3	3	3	3	2	2	1	3	0	1	3	2	2
CO3	1	2	2	3	3	2	1		1	0	2	2	2	1
CO4	3	3	3	2	3	0 Unit-	1 I	1	2	0	2	3	2	2 hrs
comm Orbita	unicat al theo	n: Orig ion, cur ory: Ort n, azim	rent sta pital me	te of sa echanis	tellite o sm, loca	commu ating th	nicatione satel ne satel ulation	on. lite in t				-		angle
trackir link d	ng and esign:	d satell comma basic t ems usir	nd (T& ransmi	C), co ssion t	mmuni heory,	ications noise s, uplin	s subsy figure k desig	stems, and no	transpo oise te	onders, mperat	satellit ure, de	te anter sign o	nnas, sa f down ied (C/	atellite nlinks, N).
						<u>Unit-</u>	<u>111</u>						12 h	irs
satellit transm	te, S/N nission	, multig ratio f of dig DMA,	or sate ital dat	llite FN a, digi	À video tal mo	o transi	mission	n; digit	al trans	smissic	on, base	eband a	and bar	ndpass
						<u>Unit-</u>	IV						12 h	irs
absorp	otion, c broadc	effects cloud at cast sate	tenuati	on, rai	n and i	ce effe	cts, pro	ediction	n of rai	in atter	uation	. VSAT	techn	ology,

RECO	OMMENDED BOOKS	
Title	Author	Publisher
1. Satellite Communications	Timothy Pratt, Charles W. Bostian, Jeremy Allnutt	John Wiley & Sons, 2002
2. Satellite Communications Systems: Systems, Techniques and Technology	Gerard Maral, Michel Bousquet	John Wiley & Sons Ltd, 2002
3. Communication satellite systems	J Martin	Prentice Hall publication, 1978
4. Satellite Communication	Dennis Roddy	McGraw-Hill, 4th Edition 2006.

							EEC-7 LSI Cin							
			L			T				Р			Credi	ts
			3			0				0			3	
		Session											50	
						on Mar							50	
<u>Cours</u> Objec		circuit the fun	design damen teristic	, conne tal dev	ecting c ice phy	the prin ligital c vsics, pr tegrate	ircuits ocessi	, logic o ng tech	lesign, niques	and dig and tra	gital con Insistor	mpone level	nts witl	1
Cours Outco		var 2. An 3. Un	rious de alyze t iderstau lculate	esign p he DC nd the b and op	aramet and sta basics c timize	tic beha of CMO the per	avior o S fabri formar	f basic cation ice met	CMOS process rics of	logic c s, its rec CMOS	ircuits. quirem circuit	ents an	-	
	DOI					se Outo						2010	7001	Daos
<u>CO1</u>	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2
CO1 CO2	2	2	2	2	2	0	1	1	0	0 2	1	2	1	1
CO2 CO3	3	3	3	3	3	2	1	1	3	2	1 2	2	2	2
CO4	3	3	2	3	3	0	1	1	2	1	3	2	2	3
04	5	5	2	3	5	Unit-	_	1	4	1	5	<u> </u>	<u> </u>	-
transis	tor. Th	on. Phy nresholo MOS (d voltag	ge, bod	ly effec	et. MO	S devic nd curr	e desig	gn equ	ation. I				econd
		nentary tate inv												
						<u>Unit-</u>	III						8 hr	'S
	onnect	licon se and cir				ess, lay	out des							
						<u>Unit-</u>	IV						8 hr	S
charac	teristi	cterizat cs, CM(Slogic s	OS gate	e transi	stor siz	zing, po	ower di	ssipatio	on. Bas	-				<u> </u>
					REC	COMM	ENDE							
1 Dec	ion of	Title Analog	CMO	S Intor	ratad (ircuite	Do	Auth hzad R		<u>،</u>	/IcGrav	Publi	sher	
	-	tronics				neults		dra & S				Univer:	sity Pre	ess
		of CM			ign			il H.E				ley, 19	2	
	1	gital In			<u> </u>			ng-Mo				v-Hill,		
							1	-						

					w	P Vireless	EEC-7		ntion					
			L			T	Com			Р			Credit	ts
			3			0				0			3	
		Session											<u>50</u>	
			emeste										50	
Cours Objec		fading mobile	effects	. The e	mphasi tion an	is will	be to a	nalyze	differe	vstems, ent mod es of C	ulation	technie	ques us	ed for
Cours			derstan											
Outco	mes									ess com				
										chnique			and the	basic
			nciples											cubit
			-							n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	0	1	0	0	1	0	0	1	1	3	2
CO2	2	2	3	3	1	0	2	1	1	0	2	2	2	2
CO3	3	2	1	2	2	1	1	1	1	0	2	2	2	3
CO4	2	2	0	0	1	2	2	1	0	0	3	2	3	3
						<u>Unit-</u>	<u>I</u>						12	hrs
assigni strateg	ment s ies, int	ular sys strategie erferenc sectoring	es, co-c ce and s	hannel	interf	erence, /, trunk	detern ing effi	nining	the fr	equenc	y reuse	e distar	nce, ha ar syste	nd-off m, cell
						Unit-							12 h	
propag propag	gation gation 1	propa mechai nodels, ad and d	nisms, signal	reflect penetra	tion, di	iffracti to buile	on, sca dings, t	attering	g, outd	loor pr	opagati	ion mo	odels, i	ndoor
						<u>Unit-</u>	III						12 h	rs
minim	um shi	techniq ft keyin 1 schem	g, sprea	id spect	trum m	odulati	on tech	niques,	, DS-SS	S, and F	H-SS s			
						<u>Unit-</u>	IV						12 h	rs
archite princip	cture, f ole, pov d gene	mmuni radio su ver cont eration	bsyster rol, effe	n and c ects of r	hannel nultipa	types. o th propa	cellular agation	code d	livision le divisi	multip	le acces tiple acc	ss (CDI cess and	MA) sy d introd	stems: uction
					REC	COMM	ENDE	D BO	OKS					
		Title					Auth	or			Publ	isher		
1. Wir	eless (Commu	nication	ns		_	Rappa	-		Pearson	n Educa	ation, 2	003.	
2. Prin	ciples	of Mot	oile Coi	nmuni	cation	Goi	rdon L.	Stube	r	Spring	er Inter	nationa	ıl Ltd.,	2001.
3. Wir	eless (Commu	nicatio	15		An	drea G	oldsmit	th	Cambr	idge Ur	niversit	y Press	s, 2007

							EEC-7							
			L	Electr	onic M	leasure T	ements	and I	istrum	entation P	on		Credit	6
			3			0				0			3	19
		Sessio	nal Ma	rks				I		-			50	
		End S	emeste	r Exan	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		insight	to PMN	AC inst	rument	and bri	dges. It	unit, di discuss RO and	ses as to	how th	e analo	g data i	s conve	rted to
Cours Outco		 Ur Ur Ur De 	nderstar nderstar	nd the w nd bridg the w	orking theor	of PMN y, work	AC and ing of A	ced in m other ir A/D and gnal go	nstrume D/A co	nts. nverter				
			Mapp	oing of	Cours	e Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	1	2	2	0	1	0	0	0	2	2	1
CO2	0	3	2	1	2	2	2	1	0	0	0	2	2	1
CO3	0	3	2	1	2	2	0	1	0	0	1	2	2	1
CO4	0	3	2	1	2	2	2	1	0	0	1	2	2	3
						<u>Unit-</u>	I						12	hrs
combi series	nation, ohm me		of statis	tical an	alysis.	PMMC	C instru <u>II</u>	ment, g	alvano	meter, l	DC ami	meter, I	DC volt 12 h	meter,
and a	mmeter	leters: I metho	ds, Wł	neatstor	ne brid	ge, lov	v resis							
		C Dridg	etheory	, I				ance bri	dges, Q	meter.				
			e theory	, 1		Unit-		ance bri	dges, Q	meter.			12 h	
Analo servo i D/A co	method onverte	gital cor , succes er: transf s of D/A	verter sive ap	: Transt proxim	fer char ation m	Unit- racterist	III tics, A/l camp ty	D conve pe, inte	ersion to grating	echniqu and du	al slope	e integr	ntiomet ating m	rs er and ethod.
Analo servo i D/A co	method onverte	gital con l, succes er: transf	verter sive ap	: Transt proxim	fer char ation m	Unit- racterist	III tics, A/I camp ty rsion te	D conve pe, inte	ersion to grating	echniqu and du	al slope	e integr	ntiomet ating m	rs eer and ethod. mance
Analo servo i D/A co charac CRO: phase Signal freque	CRT, w by CRC I gener	gital con l, succes er: transf	nverter sive apj fer char conver m displ oscope p nalyser echniqu	: Transt proxim acterist tors. lay, tim probes, and r ues and	fer char ation m ic, D/A e base, oscillos ecorde digital	Unit- acterist acterist conve <u>Unit-</u> dual tra scope sp rs: sind signal	III tics, A/l ramp ty rsion to IV ace osc becifica e wave generation	D conve pe, inte echniqu illoscop ations ar	ersion to grating e, digit be, mea nd perfo inusoid	echniqu and du al mod sureme ormance lal sign	al slope e of op nt of vo al and	e integr eration, bltage, f	ntiomet ating m perfor 12 h frequen on gene	rs eer and ethod. mance rs cy and rators,
Analo servo i D/A co charac CRO: phase Signal freque	CRT, w by CRC I gener	gital con l, succes er: transf s of D/A wave for D, oscillo ator, a nthesis t	nverter sive apj fer char conver m displ oscope p nalyser echniqu	: Transt proxim acterist tors. lay, tim probes, and r ues and	fer char ation m ic, D/A e base, oscillos ecorde digital recorde	Unit- acterist acterist conve <u>Unit-</u> dual tra scope sp rs: sin signal ers, plot	III tics, A/l ramp ty rsion to IV ace osc becifica e wave generation tters.	D conve pe, inte echniqu illoscop ations ar	ersion to grating e, digit be, mea nd perfo inusoid ectrum	echniqu and du al mod sureme ormance lal sign	al slope e of op nt of vo al and	e integr eration, bltage, f	ntiomet ating m perfor 12 h frequen on gene	rs eer and ethod. mance rs cy and rators,
Analo servo i D/A co charac CRO: phase Signal freque	CRT, w by CRC I gener	gital con l, succes er: transf s of D/A wave for D, oscillo ator, a nthesis t	nverter sive apj fer char conver m displ oscope p nalyser echniqu	: Transt proxim acterist tors. lay, tim probes, and r ues and	fer char ation m ic, D/A e base, oscillos ecorde digital recorde	Unit- acterist acterist ethod r conve <u>Unit-</u> dual tra scope sp rs: sind signal ers, plot	III tics, A/l ramp ty rsion to IV ace osc becifica e wave generation ters. ENDE	D conve pe, inte echniqu illoscop ttions ar c, non-s tors, sp CD BOO Auth	ersion to grating e, digit be, mea nd perfo inusoid ectrum	echniqu and du al mod sureme ormance lal sign	al slope e of op nt of vo al and	e integr eration, bltage, f	ntiomet ating m , perfor 12 h frequen on gene on, cond	rs eer and ethod. mance rs cy and rators,
Analo servo i D/A co charac CRO: phase Signal freque ECG, 1	CRT, v by CRC I gener ency syn EMI, E	gital con l, succes er: transf s of D/A wave for D, oscillo rator , an nthesis t MC, and Title E Instrum	nverter sive apj fer char conver m displ oscope p nalyser echniqu l EEG e	: Transt proxim acterist tors. lay, tim probes, and r ues and tc, X-Y	fer char ation m ic, D/A e base, oscillos ecorde digital recorde	Unit- acterist acterist conve <u>Unit-</u> dual tra scope sp rs: sind signal ers, plot	III tics, A/l ramp ty rsion te IV ace osc becifica e wave generation ters. ENDE twid A.	D conve pe, inte echniqu illoscop ttions ar c, non-s tors, sp CD BOO Auth	ersion to grating e, digit de, mea nd perfo inusoid ectrum DKS or	echniqu and du al mod sureme ormance lal sign analyze 2 2	al slope e of op nt of vo al and er and o	e integr eration, oltage, f function listortico Publi PHI, N	ntiomet ating m , perfor 12 h frequen on gene on, cond	rs eer and ethod. mance rs cy and rators, cept of

					Neur	P al Netw	EEC 7		zv Logi	c				
			L		ittui	T			ay nogi	P			Credi	ts
			3			0				0			3	
		Session											<u>50</u>	
		End S	emeste	er Exar	ninatio	on Mar	·ks						50	
<u>Cours</u> Objec		course networ	for var ots of 1 , the stu ck and	ious ap neural udent w fuzzy	oplicati networ vill be r logic b	ons an ks and eady to	d intro fuzzy unders ystems	oduce t logic stand th and w	the unc are comestruct fill be of	lerlying vered i ture, de compet	g princ in deta esign a ent end	tiples. 1 il. Afte nd train ough to	Fundar r takir ing of	nental ng this neural
Cours Outco		neu 2. De uni 3. Un	ural net scribe iversal iderstar	works. the w proble nd the c	orking m solve	le of a of m er. of fuzz m to so	ultilay zy logic	er feec	l-forwa	ard art			•	
			Map	ping of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3	3	1	1	0	0	0	3	3	3	3
CO2	3	3	2	1	3	2	1	1	1	3	3	3	3	3
CO3	2	3	2	2	2	0	0	1	1	2	2	3	3	3
CO4	3	2	2	1	3	0	0	3	2	1	2	3	3	3
physio networ reinfor	logy, rk topo rced 1	work f artificia ologies, earning percept	l neuro ANN j , comj	on mod parame petitive	lel, arti eters, le e learn	ficial r arning ing, d	ntellige neural 1 metho elta ru	networl ds, sup lle, gra	k, artif ervised dient	icial ne 1 learni	eural ne ng, uns	etwork supervi	orks, r archite sed lea	ecture, rning,
						<u>Unit-</u>	II						12 k	irs
learnir	ng pro	gation ocedure, learning	single	e laye	artifi	cial ne	eural n	etwork	, mult	tilayer	-		· 1	1
						<u>Unit-</u>	III						10 k	rs
functio	ns fuzz	Fuzzy s zy set op uct, open	perators	, crisp 1	elation	, cartesi								
						<u>Unit-</u>	IV						12 k	irs
formul	la, pre	ms: Pro edicate on meth	logic i	inferen	ce, fuz	zy qua	antifier	s, fuzz						-

REC	OMMENDED BOOKS	
Title	Author	Publisher
1. Understanding Neural Networks and Fuzzy Logic	Stamatios V. Kartalopoulos	Prentice Hall of India Private Limited, New Delhi, 2000
2. Fuzzy Systems Design	Riza C.	Chand Publishers
3. Neural Networks, Fuzzy Logics and Genetic Algorithms (Synthesis and Applications).	S. Rajasekaran, G.A. VijaylakshmiPai	PHI Learning Private Limited, 2011

							PREC-							
			L			Т				Р			Credi	ts
			0			0				12			6	
Cours Objec		compl studen econor potent interac centred and leg suppor	eted an ts to a nic, en ial em etive an d prese gal visu	d impi approa vironn ployer d time ntation ial aids deliver	rove per ch eth nental, rs. Ide manag ns meet s. Ident ry in pu	ersonali ically and soon ntify a ements ting co ify and ablic an	ity dev any m cial con and ap strategi ncrete l critica nd prof	elopme ultidis ntexts a ply ap les to th profess ally eva	ent and ciplina and to s opropri- neir aca sional (aluate t	presen l comm ry eng set them iate we demic s objectiv he qual ourse, a	iunicat ineerir n for fu ell-reho studies ves and lity of o	ion ski ng cha iture re earsed . Devel d integn claims,	lls. Tra llenges cruitm note-1 op aud rating e explan	in the with ent by taking ience- ethical nation,
Cours Outco		km 2. Wo 3. Ac 4. Cc pre 5. Ac	owledg ork with chieve to ommun esentati	e whic h the m he resu icate te on skil probl	h meets odern t ilts with echnica ls with em sc	s the ex ools rea nin in th l and g profess	pected quired ne stipu eneral sionalis	outcor for the lated ti inform sm.	ne. implen me. ation b	se of the nentationy mear on, pr	on of th as of or	e proje al as w	ct. ell as v	vritten
			Map	oing of	Cours	se Outo	comes	with P	rogran	n Outc	omes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		PO11		PSO1	
CO1	3	3	3	3	3	2	3	2	2	2	3	3	1	3
CO2	3	3	3	2	2	1	2	3	2	2	3	0	3	3
CO3	2	2	2	3	2	2	2	3	3	3	3	2	1	2
CO4	3	3	3	3	3	3	0	3	2	3	2	3	1	2
CO5	3	3	3	3	3	2	3	2	2	2	3	3	1	3

]		NID-72 ship in	_	try					
			L			Т				Р			Credit	S
			0			0				40			6	
Course	е	The ob	jective	of inte	ernship	is to p	rovide	possib	le oppo	ortuniti	es to le	earn, ur	ndersta	nd and
Object	_	sharpe	n the	real ti	me tec	chnical	/mana	gerial	skills	require	ed at	the job	o and	to get
		familia	familiarize and provide "hands on" training experience with the requisite simulation,											
		design	lesign, and analytical tools and techniques. It also focusses on student to achieve a											
		long-te	ong-term goal of transforming themselves into a brilliant blend of theoretician and											
		practic	ing eng	gineer,	unders	stand th	ne socia	l, ecor	iomic,	and ad	ministr	ative c	onside	rations
		that in	fluence	e the v	vorking	g envir	onment	t of in	dustria	l organ	nization	ns and	to ma	ke the
		studen	ts able	to pres	ent wo	ork in w	ritten, o	oral or	forma	l presei	ntation	forma	ts.	
				_						_				
Course Outcor			 Correlate the theoretical concepts with the real-life industrial environment. Implement strategies like time management, multi-tasking in an industrial setup. 											
	mes													up.
	mes	2. Im	plemen	t strate	egies li	ke time	e manag	gement	, multi					up.
	mes	2. Imj 3. Ga	plemen ther an	it strate d analy	egies li ze the	ke time scienti		gement rmatic	, multi m.	-taskin	g in an	indust		up.
	mes	2. Imj 3. Ga	plemen ther an mmuni	t strate d analy cate th	egies li ze the eir wo	ke time scienti rk effeo	e manag fic info ctively f	gement rmatic throug	, multi on. h writi	-taskin ng and	g in an presen	indust		up.
		 Imp Ga Co 	plemen ther an mmuni Map	t strate d analy cate th ping of	egies lii vze the eir wo f Cour s	ke time scienti rk effeo se Outo	e manag fic info ctively t comes v	gement ormatic throug with P	, multi on. h writi rogran	-taskin ng and n Outc e	g in an presen omes	indust	rial set	
CO1	PO1	2. Imj 3. Ga	plemen ther an mmuni Map PO3	t strate d analy cate th ping of PO4	egies li ze the eir wo f Cours PO5	ke time scienti rk effeo se Outo PO6	e manag fic info ctively t comes v	gement rmatic throug	r, multi on. h writi rogran PO9	-taskin ng and	g in an presen omes	tation.	rial set PSO1	
		 Imj Ga Co PO2	plemen ther an mmuni Map	t strate d analy cate th ping of	egies lii vze the eir wo f Cour s	ke time scienti rk effeo se Outo	e manag fic info ctively t comes v	gement ormatic throug with P: PO8	, multi on. h writi rogran	-taskin ng and n Outco PO10	g in an presen omes PO11	indust	rial set	PSO2
CO1	PO1 3	 Imj Ga Ga Co PO2 2	plemen ther an mmuni Map PO3 3	t strate d analy cate th ping of PO4 3	egies li vze the eir wor f Cours PO5 3	ke time scienti rk effeo se Outo PO6 3	e manag fic info ctively t comes v PO7 3	gement ormatic throug with P PO8 2	rogran PO9 2	-taskin ng and n Outco PO10 3	g in an presen omes PO11 1	rindust tation. PO12 3	rial set PSO1 3	PSO2 1