Course Curriculum for Post Graduate Programme

in

Electronics & Communication Engineering

Department of Electronics & Communication Engineering

Sant Longowal Institute of Engineering & Technology Longowal-148106 Phone: 01672-253117 Fax: 01672-280057 Website: www.sliet.ac.in

VISION

The Department of Electronics & Communication Engineering shall strive to create engineering technocrats for addressing the global challenges in relevant areas to cater the ever changing needs of society at National and International level.

MISSION

- 1. To ensure dissemination of knowledge through effective teaching and learning in Electronics and Communication Engineering.
- 2. To excel in Research and Development activities in emerging areas.
- 3. To promote industry-institute and institute-institute linkages for sustainable development of academic, research, training and placement activities.
- 4. To establish center of excellence in thrust areas to nurture the spirit of innovation and creativity among faculty and students.

Programme Educational Objectives (PEOs)

The M. Tech. (Electronics & Communication Engineering) program shall produce professionals:

- 1. To provide in-depth knowledge of modern design tools to solve real-life problems in the field of Electronics and Communication Engineering.
- 2. To develop employability skills to meet dynamic educational and industrial needs for betterment of society.
- 3. To impart research skills with professional and ethical attributes.
- 4. To attain professional leadership qualities for effective delivery in multi-disciplinary domains.

Programme Outcomes (POs)

After successful completion of M.Tech. (Electronics & Communication Engineering) program, the student will be able to:

- 1. Use mathematics, science and engineering knowledge for solving complex problems in the field of Electronics and Communication Engineering.
- 2. Identify and analyze engineering problems to formulate appropriate solutions proficiently.
- 3. Design and develop real-time system to meet desired needs in the field of Electronics and Communication Engineering.
- 4. Compile, interpret and present research data in an appropriate format, taking into consideration scientific principles and methodology.
- 5. Use effectively modern tools and techniques for modeling complex problems to provide alternative solutions.
- 6. Design engineering systems to address societal, legal, cultural, security, health and safety issues.
- 7. Use techniques, skills, and modern engineering tools required for environmental and sustainable development.
- 8. Adopt and exhibit professional knowledge with ethical responsibilities.
- 9. Function effectively as an individual as well as team-member for achieving desired goals.
- 10. Communicate in both verbal and written forms to compete globally.
- 11. Exhibit confidence, leadership qualities and remain engaged in life-long learning.
- 12. Take up administrative responsibilities involving both project and financial management, confidently.

M.TECH. (ELECTRONICS AND COMMUNICATION ENGINEERING)

	-	Semester-I			-		
Sr. No.	Subject Code	Subject Name	L	т	Р	Hrs.	Credits
1	PCEC 811	Optical Communication Systems	3	0	0	3	3
2	PCEC 812	Advanced Communication Systems	3	0	0	3	3
3	PEEC 811	Core Elective-I	3	0	0	3	3
4	PEEC 812	Core Elective-II	3	0	0	3	3
6	RMAL-811	Research Methodology and IPR	2	0	0	2	2
7	ACMH-811	English Research Paper Writing and Professional Communication	2	0	0	2	0
8	PFFC 813	Core Elective-1 Lab	0	0	4	4	2
9	PCFC 814	Ontical Communication System Lab	0	0	4	4	2
	1020 011	Total	16	0	8	24	18
			10				10
		Semester-II (A)					
Sr. No.	Subject Code	Subject Name	L	т	Р	Hrs.	Credits
1	PCEC 821	Microwave Integrated Circuits	3	1	0	4	4
2	PCEC 822	VLSI Design	3	0	0	3	3
3	PEEC 821	Core Elective-III	3	0	0	3	3
4	PEEC 822	Core Elective-IV	3	0	0	3	3
5	ACMH-821	Constitution of India	2	0	0	2	0
6	PCEC 823	VLSI Design Lab	0	0	4	4	2
7	PEEC 824	Core Elective - II Lab	0	0	4	4	2
8	PCEC 824	Seminar	0	0	2	2	1
		Total	14	1	10	25	18
		Semester-II (B)					
	Four weeks tra	aining in reputed industry/laboratory	/ in				
	Institutions of	repute such as IITs, NITs, CSIR, DF	RDO,			40	S/US
	CSIO etc.						
		Semester-III					
Sr. No.	Subject Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PEEC 911	Core Elective -5	3	0	0	3	3
2	OEEC 911	Open Elective	3	0	0	3	3
3	PCEC 911	Dissertation (Part-1)	0	0	20	20	10
		Total	6	0	20	26	16
		Semester-IV				1	Γ
Sr. No.	Subject Code	Subject Name	L	T	Р	Hrs.	Credits
1	PCEC 921	Dissertation (Part-2)	0	0	32	32	16
		Total	0	0	32	32	16

	List of Program Specific/ Core Elective Courses									
	CORE ELECTIVE -I (PEEC811)									
Sr. No.	Subject Code	Subject Name								
1	PEEC-811A	Micro & Nano-photonics								
2	PEEC-811B	RF Circuit Design								
3	PEEC-811C	Statistical Information Processing								
		COREELECTIVE-II (PEEC 812)								
Sr. No.	Subject Code	Subject Name								
1	PEEC 812A	Antenna and Radiating System								
2	PEEC 812B	Internet of Things								
3	PEEC 812C	Remote Sensing								
		COREELECTIVE-III (PEEC 821)								
Sr. No.	Subject Code	Subject Name								
1	PEEC 821A	Advanced Digital Signal Processing								
2	PEEC 821B	Soft Computing								
3	PEEC 821C	Digital Image Processing								
4	PEEC 821D	Artificial Intelligence and Deep Learning								
		CORE ELECTIVE-IV (PEEC 822)								
Sr. No.	Subject Code	Subject Name								
1	PEEC 822A	Electronic Product Design								
2	PEEC 822B	Satellite Communication								
3	PEEC 822C	Digital Circuit Logic Design								
		COREELECTIVE-V (PEEC 911)								
Sr. No.	Subject Code	Subject Name								
1	PEEC 911A	Wireless Sensor Networks								
2	PEEC 911B	Network Security and Cryptography								
3	PEEC 911C	Advanced Computer Networks								
		CORE ELECTIVE-I LAB								
Sr. No	Subject Code	Subject Name								
1	PEEC 813A	Communication Systems Lab								
2	PEEC 813B	Wireless Communication Lab								
		CORE ELECTIVE-II LAB								
Sr. No	Subject Code	Subject Name								
1	PEEC 824A	Microwave Engg. Lab								
2	PEEC 824B	Computer-Aided Design Lab								

Total Credits: 68

List of Open Elective Courses

Sr. No.	Subject Code	Subject Name
1	OEEC 911A	Electronic Product Design
2	OEEC 911B	Soft Computing
3	OEEC 911C	Optical Communication Systems

	PCEC-811											
				Optic	al Com	munica	tion Sys	tems			Cuadity	
		-		2			۱ ٥	1	י ר		Create	<u>></u>
		-	Sossional	5 Marks			0	,	J			
		-	End Som	octor Ev	ominati	on Mar	kc				50	
Course			The sim	of this	courso		train ct	udonte	in mot	hods of	50 F analy	sis and
Object	ives:		installatio	on of	ontical	fiber-	nased	commu	nication	s syste	anary ams• o	svstems
			planning	to use o	different	t photo	nic tech	nologie	s as we	ll as ad	vanced	optical
			signal pr	ocessing	g mode	ls. Furt	her, fo	cuses o	n diffe	rent no	nlinear	ities in
			optical fi	ber and	, their	mitigati	on in n	nodern	optical	fiber c	ommur	nication
			system;	design a	and eva	aluation	of mo	dern o	ptical f	iber co	mmuni	cation
			systems.									
Course	2		1. To un	derstand	d the ba	asic con	cept of	optical f	iber cor	nmunic	ation sy	ystem.
Outcomes: 2. To understand the various dispersion nonlinearities effect in optical												
communication system												
			3. Ability	y to desi	gn high	bit-rate	e fiber o	ptic con	nmunica	ation sys	stems.	antical
			4. ADIII	y lo nunicatio	analyze	;, 1100 mc	uer an	a imp	nement	auva	nceu	ориса
	communication systems.										ss the	
			result	s obtain	ed from	theore	etical stu	udies.	nalation	1 10015	10 0350	.55 the
			Mappin	g of cou	rse out	comes	with pro	gram o	utcome	s		
							-			PO1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	PO11	PO12
CO1	М	W	N	N	Ν	W	N	N	W	N	N	N
CO2	M	N	N	S	N	N	N	N	M	N	N	N
CO3	W	M	M	N	N	S	N	N	N	N	M	M
CO4		5	5	N		5		IN N	IN N	IN N	VV N	IVI
COS	IN	IN	IVI		1VI i+ 1	IVI	IVI	IN	IN	IN	IN	16 brs
Overvi	iow of	onti	al fiber	<u>commu</u>	nication	• Evolu	ition o	f hasic	fiher	ontic c	ommur	
system	n. bene	fits a	nd disad	vantage	s of fi	her on	tics. tra	nsmissio	on wind	lows. tr	ransmis	sion of
light t	hrough	optio	al fiber.	numeric	al aper	ture (NA). on	tical fit	per mo	des & (configu	rations.
types	of fiber	, wav	e propaga	ation in	step ind	dex & g	raded i	ndex fib	er, MFI	D, propa	agation	modes
in ste	o index	fiber	s, attenua	ation in	optical	fibers,	fiber o	ptic loss	s calcula	ations,	bendin	g loses,
absorp	otion, s	scatte	ring, fib	er disp	ersion,	dispe	rsion s	hifted	fiber,	D -fla	ttened	fiber,
polariz	ation, c	ut-off	condition	and V-p	baramet	er, con	nectors	& splice:	s.			
Disper	sion an	nd no	nlinearitie	es: Dispe	ersion i	n single	e mode	and mu	ultimod	e fibers	, atten	uation
and o	dispersio	on li	nits in .	fibers, (dispersi	on ma	nageme	ent, Ke	rr non	linearity	, self	-phase
modul	ation, ci	ross p	hase mod	ulation,	FWM.							12 1
Ontion			iract and	<u>Un</u>	<u>IT-II</u> t band		atoriale	comico	nductor	light o	mitting	12 nrs
and In	ser dia	doc I	FD DOWO	r & offi		double Bab III	hotoro	-iunctio		nlanner	ം ഉപപം	me IFD
surface	surface-emitting LEDs edge-emitting LEDs super luminescent LED characteristic of LED											
modul	ation. la	aser d	iodes: bas	sic conce	epts for	emissi	on of ra	diation.	thresh	old con	dition f	or laser
oscilla	tion, qu	antur	n well lase	er, distrik	buted fe	edback	laser, la	aser cha	racteris	tics.		

Optical detectors: Principles of photodiodes, PIN & avalanche photodiodes, photodetector											
noise, detector response time, avalanche multiplication noise, temperature effect on a valanche											
gain, receiver SNR and BER calculations.											
Unit-III 10 hrs											
Optical amplifiers: Semiconductor amplifiers, Erbium-doped fiber amplifiers (EDFAs) and											
Raman amplifiers, analytical modeling of gain saturation, gain equalization, ASE noise, amplifier											
cascades.											
Optical sensors: Advantages, generic optical	fiber sensor, fiber se	election fo	or sensor, wavelength								
modulated sensors - pH, humidity, temperat	ure, carbon dioxide	sensors,	fiber Bragg grating								
based sensors - principle, strain, pressure sen	sors, chemical senso	rs.									
Unit-IV 10 hrs											
Optical networks design: Fiber optic system design considerations -power budget, bandwidth											
and rise time budgets, electrical and optical ba	ndwidth etc.										
Advanced multiplexing strategies: Optical	TDM, subscriber n	nultiplexi	ng (SCM), WDM and								
hybrid multiplexing methods, optical net	working - optical	network	topologies, network								
architecture-SONET/TDH, optical burst sv	witching, OADM, w	vavelengt	h conversion, optical								
filters, MZI.											
RECOMN	IENDED BOOKS										
Title	Author	Pub	lisher								
1. Fiber-optic communication Systems G. P. Aggarwal 2nd Ed., J. Wiley & Sons,											
1997											
2. Optic Communication Systems Mynbaev Pearson education, 2001											
3. Optical Fiber Communication Gerd Keiser 5th edition, McGraw Hill,											
		2013									
4. Optical Fiber Communication	J. Senior	PHI									

	PCEC-812 Advanced Communication Systems													
				L	ancea		T		P		Credits			
		-		3			0		0		4			
		-	Sessior	nal Mar	ks		-		-		50			
		-	End Se	mester	Exami	nation	Marks				50			
Cours	е		Aim of	the co	urse is	to stu	dv the	fundam	nentals	of fading	channel	s. It also		
Objec	tives:		gives o	leep in	sight i	nto th	, e basic	s of G	SM an	d CDMA.	It discu	usses the		
			different types of diversity techniques and equalization algorithm used in											
			commu	unicatio	n syste	ems. Fir	ally, it i	ntrodu	ces the	concept o	of 3G, 40	and 5G		
			wireles	s comn	nunicat	ion sta	ndards.	1		-				
Cours	e		1. Des	sign app	propriat	te mob	ile com	munica	tion sy	stems.				
Outcomes: 2. Apply frequency reuse concept							pt in	mobile	commur	ications	and to			
			ana	ilyze it	s effec	cts on	interfe	erence,	syster	n capacit	y, and	handoff		
techniques.														
	3. Distinguish various multiple access techniques for mobile										mobile			
	communications e.g., FDMA, TDMA, CDMA and their advantages and													
disadvantages.														
			4. Ana	alyze a	nd de	sign C	DMA s	system	functio	oning wit	h know	ledge of		
			tor	ward ai	nd reve	erse cha	annel d	etails,	advanta	ages and	disadvan	tages of		
			usii	ng the t	echnol	ogy.								
			5. Un	derstan	ding up		g techn	ologies	like 30	, 4G etc.				
	DO1	002		ing of c	ourse o					comes	DO11	DO12		
<u> </u>	۲ <u>01</u>	PU2	PU3	P04	PU5	P06	P07	P08	P09	P010	POII	NA/		
CO1	<u> </u>	5	IVI C		5	<u> 5</u> М		VV N/				VV \\\/		
CO2	<u> </u>	5	5		5							VV NA		
CO3	<u> </u>	5 C	5 6		IVI C	VV \\/	VV N/	IVI S		VV \\\/				
C04	<u> </u>	<u> 5</u>	3		Л	VV NA	IVI C	5		VV \\\/				
005	IVI	IVI	vv		i+_I	IVI	3	3	vv	vv	vv	12 brs		
Collui	ar com	munic	ation fr	undame	ntals:	دايالم	r systor	n dasia	n frog	LIANCV RAL	الام دمال	solitting		
bando		ncente		nannel	and a	diacont	chann	n uesie ol into	orferenc	o intorfe	rence r	eduction		
techni		and m	ethods	to im	nrove	cell co		frequ	ency n	nanageme	nt and	channel		
assign	ment		ethous		prove		veruge,	печи	citey ii	lanageme		channer		
499.911												101		
				<u>Un</u>	<u>it-II</u>		· · ·					12 hrs		
Mobil	e radio	o prop	agation	: Large	scale	path lo	oss, fre	e space	e propa	gation mo	odel, rac	lio wave		
propa	gation	mecha	inisms,	ground	i refiec	πon (t	wo ray) mode	el, outa	ge probat	Sility, sm	all scale		
lading	, and here fo	muitip	atn pro	pagatio	on, typ	bes of	small	scale I	ading,	aiversity	techniq	ues and		
algorit														
GSM	and C	do di	vision	<u>untinl</u>	<u> </u>		M arch	itocture		cubayato	me GSN			
chann	alia da	ta onc	ryntion	in GCM	d mot	nility m	vi aitil	nent c	all flow	subsyste	Introdu	iction to		
	CDMA technology IS-05 system architecture, air interface, physical and logical channels of IS													
95 for	rward I	ink and	t revers	e link o	neratio	n call	nroces	sing in	ואסונמו ג-מג ה	all proces	sing in IQ	5-95 coft		
hando	ff evo	lution /	nf 15-05				PIOCES	, ing in	1 3 33, U		5111g 11 13	, <i>55</i> , son		
nanuu	, evu		5115-55		nr 200	0.								

<u>Unit-IV</u>	12 hrs										
Higher generation cellular standards: Ev	tandards and its architecture, call										
flow for LTE, VOLTE and UMTS, introduction to 5G.											
RECON	RECOMMENDEDBOOKS										
Title	Author	Publisher									
1. Mobile Cellular Telecommunications	William C.Y.	2 nd edition, TMH									
Analog and Digital systems	Lee.	Publication,1995									
2. Wireless Communications Principles	T.S. Rappaport	2 nd edition, PHI,2002									
and Practice											
3. V.K. Garg	IS-95 CDMA and	4 th وPearson education									
	CDMA-2000	edition,2009									
4. A GSM system Engineering	Asha Mehrotra	Artech House Publishers, Boston,									
		London,1997									

PEEC-811A Micro and Nano- Photonics												
							T		P		Credits	
				3			0		0		3	
			Session	al Mar	ks		•		<u> </u>		50	
			End Sei	mostor	Evamin	ation N	larks				50	
Cours	Course The motivation for the course is to make the students understands the											nds the
Objec	<u>e</u> tives:		fundar	ontals	of ph	otonics	with	focus	on mic	ro-nhot	anic and	
<u>Objec</u>	tives.		nhoton	ic devic	res and	nhysics	WILII	iocus (on nic	io-priot	Jine and	i nano-
Cours	e		1 To u	ndersta	and the	fundam	Jentals (of phot	onics			
Outco	<u>~</u> mes:		2. To u	ndersta	and the	fundar	nentals	of surf	ace pla	smon po	laritons	both at
04100	<u></u>		singl	e. flat i	nterface	es and i	n metal	/dielect	tric mul	tilaver s	tructures	5.
3. Able to design different types of plasmonic sensors and solar cells.										s.		
4. Able to design nano-photonic devices.												
5. Able to model and analyze the nano-photonic devices using finite-										g finite-		
			diffe	rence t	ime- do	main m	nethod.					-
			Mappir	ng of co	ourse ou	Itcome	s with p	rogram	n outcoi	mes		
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	S	S	М	S	М	М	Μ	N	S	М	N	N
CO2	S	S	М	М	Μ	N	Μ	N	Μ	М	N	N
CO3	S	Μ	S	S	S	S	S	Μ	S	S	N	Ν
CO4	S	S	S	S	S	М	Μ	Ν	S	S	Ν	Ν
CO5	S	S	Μ	Μ	Μ	Ν	Μ	Ν	Μ	М	Ν	Ν
				<u>Ur</u>	nit-l							14 hrs
Ray optics : Introduction, postulates of ray optics, Hero's principal, Snell's Law, simple optical components, graded-index optics, ray equation (Paraxial ray equation) matrix optics, ray - transfer matrix, matrix of simple optical components (free-space propagation, refraction at a planar boundary, refraction at a spherical boundary, transmission through a thin lens, reflection from a planar mirror, reflection from a spherical mirror), matrices of cascaded optical components. Wave optics : Postulates of wave optics, intensity, power, and energy, monochromati c waves: complex representation and Helmholtz equation, wave fronts (plane waves, spherical waves, interference, diffraction), paraxial waves, beam optics, Fabry Perot cavity, micro resonators - ring resonator and disc resonator devices. Electromagnetic optics : TM and TE polarized light, boundary conditions, transmission and reflection of P-polarized and S-polarized light from a planar boundary, single and multi-layer												
proble	em pola	rizatio	n of ligh	t; matri	x repres	sentatio	on (The	Jones v	ector).	1		421
Revie FDTD electr of the funda interfa mode Loren	Electromagnetic optics: TM and TE polarized light, boundary conditions, transmission and reflection of P-polarized and S-polarized light from a planar boundary, single and multi-layer problem polarization of light; matrix representation (The Jones vector).Unit-II12 hrsReview of electromagnetic (EM) theory: Boundary conditions, some relevant EM problems, FDTD and FEM modelling, electromagnetics of metals Maxwell's equations and electromagnetic wave propagation, the dielectric function of the free electron gas, dispersi on of the free electron gas and volume plasmon, real metals and inter band transitions, fundamentals of plasmonics, surface plasmon resonance, surface plasmon polaritons at a single interface, dispersion relation, multilayer system, propagation length, pen etration depth, Drude model without considering damping, Drude model considering damping, Lorentz model,											

Unit		12 hrs								
Excitation of surface plasmon polaritons at planar interfaces: Coupling mechanism, prism										
coupling, Kretschmann configurations, Otto configurations, angular interrogation, spectral										
interrogation, reflectivity, transmittiv	vity, complete resonance cond	ition,	grating coupling, wave							
guide coupling: 1-D coupling, 2-D co	upling, plasmonic gratings, mo	dels	describing the refractive							
index of metals, localized surface pla	asmon resonance, plasmonic s	senso	ors and devices, surface-							
enhanced Raman scattering.										
Unit-IV 10 hrs										
Plasmonic waveguides and interco	onnects: Metal dielectric inte	rface	, MI wave guide, MIM							
wave guide, IMI wave guide, symn	netric and anti-symmetric mo	ode,	propagation length and							
penetration depth of MIM and IMI v	vave guide, photonic crystals a	nd de	evices.							
F	RECOMMENDED BOOKS									
Title	Author		Publisher							
1. Principles of Nano-optics	1. Principles of Nano-opticsL. Novotny and B. HechtCambridge University									
2. S. Maier Plasmonics - Fundamentals Springer										
	and Applications									

PEEC-811B																		
					RF C	ircuit D	esign			1	<u> </u>							
			L 2			<u> </u>			<u>Р</u>									
			5 Soccior			0			0	5								
			End So	nostor	Evamin	ation N	larks				50							
											50	105						
Cours	e Objec	tives:	The co	urse all	ms to de	sign an	d analyz	ze basic	resona d abara	tors, RF	filters, a	and RF						
			compo	nonte	piller; si	luay in read r	e opera	cod in E	u chara PE docia	cleristic	SOIRF	active						
Cours	0			discuss	design	and and	linkers u	filtors a	nd amr	lifiors								
Outco	mes:		2 To	unders	tand the	worki	ing cond	rents o	f RF ac	tive cor	nnonen	ts and						
<u> </u>			im	edance	e matchi	ng.					nponen							
			3. To	study tl	he opera	tion of	mixers a	and osc	illators.									
		Mapping of course outcomes with program outcomes																
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12						
CO1	S	S	S S N S N M							N	М	W						
CO2	S	Μ	Ν	N	Ν	Μ	Μ	Ν	Ν	N	Μ	N						
CO3	Μ	Ν	Ν	Ν	Ν	Μ	Ν	Ν	Μ	N	Ν	N						
				<u>Ur</u>	<u>nit-l</u>							12 hrs						
Introd	luction:	Import	tance of	radio f	requenc	y desig	n, RF b	ehavior	of pass	sive com	iponent	s, chip						
compo	onents	and cir	cuit boa	rd con	sideratio	ns, ger	neral tra	ansmiss	ion line	equation	on, mici	rostrip						
transr	nission	ines.		11.0								12 hrs						
				<u>Un</u>	<u>III-II</u>					<u> </u>								
RF no	etwork	and f	ilter: In	tercon	necting	networ	rks, net	work p	properti	es and	applica	ations,						
implo	ring par montati	ameter	s, Dasic	resona	tor and i	inter co	onigura	tions, s	рестаг п	iiter real	lizations	s, mer						
impier	mentati		pieu mu		:+ 111							12 hrs						
A att				<u>110</u> h.e.v. h	<u>nt-m</u>	:		hasiaa										
ACTIVE	e KF CC	field of	ents and	a moa	eiing: So	emicon	auctor	Dasics,		baes, bi	polar-ju	Inction						
Match	sior, rr	heiu ei 1 biasir	a notw	orke: Ir	, uiuue ii mnodanc	ioueis,	hing us	ing disc	eis.	mnoner	nts mic	rostrin						
line m	atching	netwo	rks, amp	lifier cl	asses of	operati	ion and	hiasing	networ	ks.	itis, iiiic	rostrip						
		netwo		Uni	it-IV:	operati	on and	01001116	incentor			12 hrs						
RF tra	nsistor	amplif	ier, osci	llators	and mix	kers: C	haracter	ristics o	f ampli	fiers, an	nplifier	power						
relatio	ons, stal	oility co	onsidera	tions, d	constant	gain, I	noise fig	gure cir	cles, co	onstant	VSWR (circles,						
broad	band, ł	nigh po	wer, an	d mult	tistage a	mplifie	ers, basi	ic oscill	ator m	odel, hi	gh frec	quency						
oscilla	tor con	figurati	on, basio	charac	cte ristics	of mix	ers.	oscillator configuration, basic characteristics of mixers.										
RECOMMENDED BOOKS																		
					RECOIVII	VIENDI	ED BOO	KS										
1. RF	Title				RECOIVII		ED BOO Author	KS		Publ	isher							
	Title Circuit I	Design			RECOIVII	Reir	ED BOO Author	dwig,	Pears	Publicon Educ	isher ation, 1	st						
2.5	Title Circuit I	Design				Reir	ED BOO Author hold Lu el Bretch	KS dwig, nko	Pears India	Publicon Educ	isher ation, 1 t, 2001.	st						
2. Des	Title Circuit I sign of A	Design Analog (CMOS Ir	ntegrate	ed	Reir Pave B Ra	D BOO Author hold Lu el Bretch azavi	r KS dwig, nko	Pears India Mc G	Publicon Educion n Reprin raw Hill,	isher ation, 1 t, 2001. 2000.	st						
2. Des Circuit	Title Circuit I sign of A ts	Design	CMOS Ir	ntegrate	ed	Reir Pave B Ra	Author Author hold Lu el Bretch azavi	dwig, nko	Pears India Mc G	Publicon Educion n Reprin raw Hill,	isher ation, 1 t, 2001. 2000.	st						
2. Des Circuit 3. RF	Title Circuit I sign of A ts Microel	Design Analog (ectroni	CMOS Ir	ntegrate	ed	Reir Pave B Ra Beh	ED BOO Author hold Lu el Bretch azavi zadRaza	dwig, hko	Pears India Mc G	Publicon Educion n Reprin raw Hill, edition, F	isher ation, 1 <u>t, 2001</u> 2000. Pearson	st						
2. Des Circuit 3. RF	Title Circuit I sign of A ts Microel	Design Analog (ectroni	CMOS Ir ics Theory 8	ntegrate	ed cations	Reir Pave B Ra Beh	ED BOO Author hold Lu el Bretch azavi zadRaza	dwig, nko nvi	Pears India Mc G 2nd e Educa	Publicon Educe n Reprin raw Hill, edition, F ation, 19 edition, F	isher ation, 1 t, 2001. 2000. Pearson 997. Pearson	st						

PEEC-811C													
				Statist	ical Info	ormatio	on Proce	essing					
				L			Т		2		Credits	5	
				3			0	()		3		
		S	essiona	l Marks	6						50		
		E	nd Sem	ester E	xaminat	tion Ma	arks			50			
<u>Course</u>		Т	he mai	n objec	tive of t	he cou	rse is to	under	stand th	ne basic	s of dis	crete &	
<u>Objectiv</u>	ves:	C	ontinuo	ous ran	dom va	ariables	and p	rocesse	es, rand	om sig	nal mo	delling,	
		S	tatistica	al decis	ion the	ory, p	aramete	er estin	nation a	and spe	ectral a	nalysis.	
		F	low dis	crete c	hannels	and n	neasure	s of inf	ormatio	on gene	eralize t	o their	
		C	ontinuo	ous form	ns; com	plexity	, compr	ression,	and ef	ficient o	coding	of text,	
		a	ind aud	lio-visu	al inform	mation	coding	schem	es; incl	uding e	rror de	tecting	
		a	ind coi	recting	codes	, Huff	man, S	hannon	-Fano,	arithm	etic, a	daptive	
coding, BCH codes & decoder, Reed - Solomon codes & decoder.													
<u>Course Outcomes:</u> 1. To Characterize and apply probabilistic techniques in modern decision													
	systems, such as information systems, receivers, filtering, and												
	statistical operations.												
		2.	. To d	emonst	rate ma	athema	itical m	odeling	g and p	roblem	solvin	g using	
			such	models								c	
		3.	. Comp	barative	ely evol	lve ke	y resul	ts dev	eloped	in thi	s coui	se for	
			арри	cations	to signa	al proce	essing, c	ommur	lication	s systen	ns.		
		4.	. 10 06	evelop	framew	orks ba	ised on	probat		ind stoc	nastic i	inemes	
			tor m	lodelinį	g and ai	naiysis	of vario	ous syst	ems inv	voiving	TUNCTIO	nalities	
								ence, e			Jelectic)[].	
	PO1		apping					POS		PO10	PO11	PO12	
CO1	M	W	N	s	N	W	N	M	W	N	N	N	
CO2	M	N	N	S	S	N	N	N	M	N	N	N	
CO3	W	M	M	N	M	S	N	S	N	S	M	M	
CO4	M	S	S	N	M	N	M	N	N	N	W	M	
		_	_	Uni	t-l			l	l			14hrs	
Review	of ra	ndom	variab	es: Pr	obability	v cond	epts. d	listribut	ion an	d dens	sitv fur	ictions.	
momen	its. inc	depende	ent. ur	ncorrela	ated ar	nd ort	hogona	l rand	om va	riables:	vecto	r-space	
represe	ntation	of rar	ndom v	ariable	s. vecto	or quar	ntizatior	n. Tche	bavchet	f inequi	ality th	eorem.	
central limit theorem discrete & continuous random variables													
Bandom process: Expectations moments ergodicity discrete-time random processes													
stationary process autocorrelation and auto covariance functions spectral representation of													
random signals, properties of power spectral density Gaussian process and white poise													
process.													
				Unit	t-II							12 hrs	
Randon	n signa	n mod	elling:	MA(a),	AR(p).	ARMA	(p,q) m	odels,	hidden	Marko	v mod	el & its	
applicat	tions, li	near sv	vstem v	vith ran	ndom in	put, fo	rward a	and bad	ckward	predict	ions, L	evinson	
Durbin	algorith	nm.				,					,		

Statistical decision theory: Bayes' criterion, binary hypothesis testing, M ary hypothesis testing, minimax criterion, Neyman-Pearson criterion, composite hypothesis testing.

	<u>Unit-III</u>			12 hrs						
Pa	Parameter estimation theory: Maximum likelihood estimation, generalized likelihood ratio									
te	test, some criteria for good estimators, Bayes' estimation minimum mean-square error									
es	estimate, minimum, mean absolute value of error estimate maximum, a-posteriori estimate,									
m	multiple parameter estimation best linear unbiased estimator, least-square estimation									
re	recursive least-square estimator.									
Sp	ectral analysis: Estimated autocorrel	ation function, perio	odogr	am, averaging the						
pe	riodogram (Bartlett method), Welch m	odification, parametric	c me	thod, AR(p) spectral						
es	timation and detection of harmonic signals									
	<u>Unit-IV</u>			14hrs						
In	formation theory and source coding: Re	view of information a	nd er	ntropy, source coding						
th	eorem, Huffman, Shannon-Fano, arith	metic, adaptive codi	ng,	RLE , LZW, data						
со	mpaction, LZ-77, LZ-78. discrete memor	y less channels, mut	ual	information, channel						
са	pacity, channel coding theorem, differentia	al entropy and mutual i	nforn	nation for continuous						
en	sembles.									
Ap	pplication of information theory: Group,	ring & field, vector, (GF a	ddition, multiplication						
ru	les, introduction to BCH codes, primit	tive elements, minima	al po	lynomials, generator						
ро	lynomials in terms of minimal polynomi	als, some examples of	BC⊦	I codes and decoder,						
Re	ed- Solomon codes & decoder, implement	ation of Reed Solomon	enco	ders and decoders.						
	RECOMM	IENDED BOOKS								
	Title	Author	1	Publisher						
1.	Probability, Random Variables and	Papoulis and S.U.	4th	Edition, McGraw-Hill,						
	Stochastic Processes	Pillai	200	2.						
2.	Statistical and Adaptive Signal	D.G. Manolakis, V.K.	Mc	Graw Hill, 2000.						
	Processing	Ingle and S.M.								
		Kogon								
3.	Signal Detection and Estimation	Mourad Barkat	Arte	ech House, 2nd						
			Edit	ion, 2005						
4.	Information theory and reliable	R G. Gallager	Wile	ey, 1st edition, 1968						
	communication									
5.	Elementary Number Theory	Rosen K.H,	Add	lison-Wesley, 6th						
			edit	ion, 2010.						
6.	The Theory of Error-Correcting Codes	F. J. Mac Williams	Nev	v York, North-Holland,						
		and N. J. A. Sloane	197	7.						

PEEC-812A														
				An	tenna A	nd Rad	liating S	ystem		[
		-		L			Т	P			Credits	;		
		-		3			0	0		3				
		-	Sessior	nal Mar	ks					50				
			End Se	mester	Examin	ation N	Лarks				50			
Course	2		The ob	jective	of this	course	is to int	troduce	the fu	Indamer	ntal prin	ciples of		
<u>Object</u>	<u>tives:</u>		antenn	a Diffe	erent ty	ypes o	f anter	nnas ar	nd the	ir appl	ications	will be		
			introdu	iced, w	ith foc	us on	loop a	ntennas	s, aper	ture an	itenna,	reflector		
			antenn	a, micr	ostrip a	ntenna	, broadl	band ar	ntenna	and ant	enna arı	ays; the		
			charact	erizatio	on and	design	conside	erations	of usi	ng ante	nnas in	wireless		
	communication systems.													
<u>Course Outcomes</u> 1. Familiarization with radiation mechanism, antenna parameters and												ers and		
	classes of antennas.													
	2. Be able to pick a particular class of antenna for given specifications.											ons.		
			3. App	ly desig	gn princ	iples to	design	antenn	as and	antenna	a arrays.			
			4. Fam	niliarize	with so	me adv	anced a	antenna	a types.					
			Mappin	ig of co	urse ou	tcomes	s with p	rogram	outco	mes				
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12		
CO1	S	M	M	M	N	M	N	M	N	N	W	N		
CO2	N	S	M	N	N	M	N	N	M	N	M	M		
CO3	S	M	S	N	M	S	M	N	N	N M M				
CO4	N	N	M	N	N	M	N	N	Μ	N	M	M		
				Un	<u>it-l</u>							12 hrs		
Funda	mental	conce	pts: Ph	ysical o	oncept	of rad	liation,	radiatio	on patt	ern, ne	ar- and	far-field		
region	s, recip	procity,	directiv	vity an	d gain,	effectiv	ve aper	ture, p	olariza	tion, ir	iput imp	edance,		
efficier	ncy, Fri	is trans	mission	equati	on, radi	ation in	itegrals	and aux	kiliary p	otentia	Itunctio	ns.		
Radiat	ion fro	m wire	es and lo	oops: Ir	ifinitesi	mal dip	ole, fini	ite-leng	th dipc	ole, linea	ar eleme	nts near		
condu	ctors, d	ipoles	for mob	ile com	munica	tion, sn	nall circ	ular loo	р.					
				Uni	<u>t-II</u>							12 hrs		
Anten	na arra	ys: Ana	alysis of	unifor	mly spa	ced arr	ays wit	h unifoi	rm and	non-ur	niform e	citation		
amplit	udes, e	xtensic	on to pla	inar arr	ays.	~			_					
Reflec	tor ant	ennas:	Prime f	ocus pa	rabolic	reflecto	or and C	Cassegra	ain ante	ennas, d	esign co	ncept.		
				<u>Uni</u>	<u>t-III</u>							12 hrs		
Apertu	ure ant	tennas:	Huyge	ns prir	nciple,	radiatic	on from	rectar	ngular	and cir	cular ap	ertures,		
design	consid	leratior	ns, Babi	net's pr	inciple,	radiati	on fron	n scrota	I and I	oyramid	al horns	, design		
concepts.														
Microstrip Antennas: Basic characteristics of microstrip antennas, feeding methods, methods														
of analysis, design of rectangular and circular patch antennas.														
				<u>Uni</u>	t-IV							12 hrs		
Broad	band a	ntenna	s: Broad	lband c	oncept,	log-pe	riodic ai	ntennas	s, frequ	ency ind	depende	nt		
antenr	nas.													
Basic concepts of smart antennas: Concept and benefits of smart antennas, fixed weight beam														

forming basics, adaptive beam forming.

	RECOMMENDEDBOOKS										
	Title	Author	Publisher								
1.	Antenna	K D Parsad	Parkash Publications								
2.	Antennas	John D. Karans	Tata McGraw Hill								
3.	Antenna Theory and Design	Balanis, C.A.	3rd Ed., John Wiley & Sons								
4.	Electromagnetic Waves and	Jordan, E.C. and	2nd Ed, Pearson Education								
	Radiating Systems	Balmain, K.G									
5.	Antenna Theory and Design	Stutzman, W.L. and	2nd Ed, John Wiley & Sons								
		Thiele, H.A.,									
6.	Antenna Theory and Design,	Elliot, R.S.	Wiley-IEEE Press								
	Revised edition										
7.	Microstrip Antenna Design	Garg. R. Bhartia, P.	Artech House								
	Handbook,	Bahl, I. and Ittipiboon.									

PEEC-812B Internet of Things												
				L			<u>5</u> T			Р		Credits
		_		3			0			0		3
		_	Sessio	nal Ma	rks					_		50
		F	End Se	meste	r Exam	inatio	n Mark	s				50
Course			The ai	m of t	his cou	irse is	to far	niliariz	e with	IoT tech	nnologie	s and its
Objectives:			require	ement	in cert	ain sc	enario	s, utili:	zation	of latest	techno	logies to
			implen	nent l	oT sol	utions	in d	ifferen	t scen	arios a	nd expe	erimental
			platfor	m for	impler	nentin	g prot	otypes	and t	esting t	hem as	running
			applica	tions.								
<u>Course</u>			1. To u	Inderst	and th	e appli	ication	areas	of IoT.			
Outcomes:2. To realize the revolution of Internet in smart cities, cloud & sensor											ensor	
			netv	vorks.								
			3. To	under	stand	build	ing b	locks	of in	ternet	of thir	ngs and
			char	acteris	stics.							
			4. To u	inderst	and th	e vario	ous ope	erating	syster	ns and s	ecurity i	ssues in
		Man	101.	Course	- Outo				0			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ	W	N	N	N	N	N	N	N	N	S
CO2	Μ	М	Μ	Ν	Ν	Ν	N	Ν	N	Ν	W	S
CO3	W	S	W	Ν	Ν	Ν	Ν	Ν	Ν	N	W	W
CO4	S	S	Μ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	М
					Unit-	· I					•	14 hrs
IoT Archite	cture:	Smart	obiec	ts as	buildiı	ng blo	ocks fo	or IoT	. oper	source	e hardw	are and
embedded	system	ns pla	atforms	for	loΤ,	edge/	/gatew	ay, I/	/Odr	ivers, (c progr	amming,
multithread	, ing cond	cepts.			,	0,	0			,		0,
Application	domair	ns of l	oT: Sm	art citi	ies and	loT re	evoluti	on, fra	ctal cit	ies, fron	n IT to le	oT, M2M
and peer ne	tworkin	g con	cepts, I	PV4 ar	nd IPV6	5, softv	ware de	efined	netwo	rks SDN.		
					<u>Unit-</u>	<u>11</u>						12 hrs
Fog comput	ing: Fro	om clo	ud to	fog an	d MIST	netw	orking	for lo	T comr	nunicatio	ons, prin	ciples of
edge/P2P r	network	ting, p	orotoco	ols to	supp	ort Ic	T cor	nmuni	cations	s, modu	ılar des	sign and
abstraction,	security	y and p	orivacy	in fog.								0
IoT technol	ogy fur	ndame	ntals:	Introdu	uction	to WS	SN and	loT r	networl	ks (PAN,	LAN ar	nd WAN),
edge resour	ce pooli	ng and	d cachir	ng, cliei	nt side	contro	l and c	onfigu	ration.			-
					Unit-	11						10 hrs
Operating s	systems	in lo	T: Rec	uirem	ent of	 opera	iting s	ystem	in loT	enviror	nment, s	study of
Mbed, RIoT and Contiki operating systems.												
Unit-IV 12 hrs												
Application of IoT: Connected cars IoT transportation, smart grid and healthcare sectors using												
loT, introdu	ctory co	ncepts	s of big	data fo	or loT a	pplicat	tions.	0'				
Security in I	Security in IoT: Security and legal considerations, IT Act 2000 and scope for IoT legislation.											
Security in for. Security and legal considerations, if Act 2000 and scope for for legislation.												

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. Internet of Things- Hands on approach	Arshdeep Bahga and Vijay K. Madisetti	VPT publisher								
2. Designing the Internet of Things	Adrian McEwen and Hakim Cassimally	Wiley								
3.Getting started with Internet of Things	CunoPfister	Maker Media								
4. Internet of things	Samuel Greenguard	MIT Press								

PEEC-812C												
					Rei		ensing		D		Cradita	
			L 2			1			P 0		Credits	
			3 Seccion		dee	0			0		3	
			Session		rKS		Aardea				50	
			End Se	emester	Examin	nation i	larks				50	
Course	e Object	tives:	The co	ourse a	ims to	provide	e an un	derstar	nding a	bout ba	isic conc	epts of
			remote	e sensi	ing, dif	ferent	types of	of spa	cecrafts	and	remote	sensing
			platfor	ms, pr	notograp	phic pr	oducts	and o	ptomed	chanical	electro	optical
Sensors used in KADAKS and Altimeter-LiDAK												
<u>Course Outcomes:</u> 1. To understand basic concepts, principles, and applications of remote											mote	
			ser	nsing, p	articular	ly the g	eometri	c and r	adiome	tric prin	ciples.	
			2. 10	appiy	principie	es of Va	ariety o	t topic	s or r∈ ∞li∞~	emote s	ensing t	o data
				unders	radiatic	on, reso	therme	na sam	piing.	cic int	orproting	
			prc	cessing	technic	arious ques.	tnerma	i uala	analy	sis, inte	erpreting	anu
			Mappin	ng of co	urse ou	tcomes	with pr	ogram	outcon	nes		
										PO1		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	PO11	PO12
CO1	S	S	Μ	S	Μ	М	S	W	W	М	W	W
CO2	S	S	S	Μ	Μ	Μ	М	W	W	W	W	W
CO3	S	S	S	S	S	Μ	М	М	W	W	W	W
				<u>Ur</u>	<u>nit-l</u>							12 hrs
Physic	s of re	mote	sensing:	Electro	omagne	tic spe	ctrum, p	physics	of rem	note ser	nsing, ef	fects of
atmos	phere	scatteri	ing, diff	ferent	types c	of atmo	sphere	scatte	ring, a	bsorptic	on, atmo	spheric
windo	w, ener	gy inte	eraction	with s	urface f	eatures	, spectra	al refle	ctance	of vege	tation, s	oil and
water	atmosp	heric ir	າfluence	on spe	ectral res	sponse	patterns	s, multi	concep	ot in rem	note sens	ing.
				<u>Un</u>	it-ll							12 hrs
Data	acquisit	ion: T	ypes of	platfo	rms, di	fferent	types of	of aircr	afts, n	nanned	and un	manned
spaced	crafts, s	sun syi	n <mark>chrono</mark>	us and	l geosyi	nchrond	ous sate	ellites,	t ypes	and c	haracteri	stics of
differe	ent plat	forms:	LANDS	AT, SP	OT, IRS	, INSA	t, ikon	IOS, Q	ИСК В	IRD etc	., photo	ographic
produ	cts, B/V	V, colo	r, color	IR film	and th	eir cha	racterist	ics, res	olving	power d	of lens a	nd film,
optom	echanio	al elec	tro opt:	ical ser	nsors –a	across t	rack an	d along	g track	scanne	rs, multi	spectral
scanne	ers and	therm	al scann	ners, ge	ometric	charac	teristics	of sca	nner in	nagery,	calibrati	on of
therm	al scanr	ners.										
				<u>Un</u>	<u>it-III</u>							12 hrs
Scattering system: Microwave scatterometry, types of RADAR, SLAR: resolution, range and										nge and		
azimuth, real aperture and synthetic aperture RADAR, characteristics of microwave image												
topographic effect, different types of remote sensing platforms, airborne and space borne ,												
sensor	s, ERS	, JERS	, RADA	ARSAT,	RISAT,	scatte	romete	r, altir	nete-rL	iDAR r	emote	sensing,
princip	principles, applications.											
	Unit-IV: 12 hrs											
Therm	al and	hyper	spectral	remot	e sensir	ng: Sens	sors cha	racteris	stics, pr	inciple (of spectr	oscopy,
imagir	ng spec	troscop	oy, field	condit	tions, co	ompour	nd spec	tral cu	rve, sp	ectral li	brary, ra	adiative
model	s, proc	essing	proced	ures, d	lerivativ	e spect	trometry	, ther	mal re	mote s	ensing, t	thermal
sensor	sensors, principles, thermal data processing, applications, data analysis, spatial resolution,											

spectral resolution, radiometric and temporal resolution, signal to noise ratio, data products and their characteristics, visual and digital interpretation, basic principles of data processing, radiometric correction, image enhancement, image classification, principles of LiDAR, aerial laser terrain mapping.

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Remote Sensing and Image interpretation	T.M. Lilles and R.	6th Edition,									
	W. Kiefer	John Wiley & Sons, 2000									
2. Introductory Digital Image Processing: A	John R. Jensen	2nd Edition, Prentice									
Remote Sensing Perspective		Hall,1995.									
3. Remote Sensing Digital Image Analysis	Richards, John A.,	5th Edition, Springer-Verlag									
	Jia, Xiuping	Berlin Heidelberg, 2013									
4. Principles of Remote Sensing	P.J.Paul Curran	1st Edition, Longman									
		Publishing Group,									
		1984									
5. Introduction to The Physics and	Charles Elachi,	2nd Edition, Wiley Series,									
Techniques of Remote Sensing	Jakob J. van Zyl	2006									
6. Remote Sensing Principles and Image	F.F.Jr, Sabins	3rd Edition, W.H. Freeman									
Interpretation		& Co, 1978									

PEEC-813 A Core Elective -1 Lab (Communication System Lab)														
			L			Т			Ρ		Credi	ts		
0 0 4											2			
Internal Assessment Marks											50			
End Semester Marks											50			
Course	<u>e</u>	The	The aim of this course is to study and understand the aspects of different											
<u>Objec</u>	tives:	type	s of sig	nals, th	eir ope	ration, t	the spe	ctrum i	n time a	and freq	juency d	lomain,		
		gene	eration,	and d	emodul	ation c	of AM	signals.	Thorou	ugh kno	owledge	would		
		enal	ole stuc	lents to	under	stand cl	naracte	rization	and de	esign co	nsiderat	tions in		
		com	munica	tion sys	tems.									
Course	<u>e</u>	-	1. To	familia	rize th	e use	of M	ATLAB	for so	olving	commu	nication		
<u>Outco</u>	mes:		engi	neering	proble	ms.								
			2. To L	earn th	e basic	s of sig	nals an	d its op	peration	s as use	ed in Ar	nalogue		
			and	Digital (Commu	nicatior	۱.	_			_			
			3. To a	nalyze	the spe	ctrum,	in time	and fre	quency	domair	n, of Am	plitude		
			Moc	lulation	•					_				
		2	4. To f	amiliari	ze with	genera	tion an	id demo	odulatio	n of AS	K, PSK	and FSK		
			sign	als using	g MATL	AB.								
		I	Mappin	g of cou	urse out	tcomes	with pr	ogram	outcom	es				
										PO1				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	0	PO11	PO12		
CO1	М	Μ	Ν	S	N	М	Ν	М	N	S	М	N		
CO2	N	Ν	S	N	N	S	М	N	N	S	S	Μ		
CO3	N	Μ	M N S M N N M S M M											
CO4	S	Ν	S	N	Ν	S	Μ	N	М	S	S	S		

- 1. To the use of MATLAB for generation of different signals important in communication theory.
- 2. To learn the use of MATLAB for different operations on signals.
- 3. To identify the spectrum analyzer as used in frequency domain analysis using SIMULINK.
- 4. To identify various types of linear modulated waveforms in time and frequency domain representation using SIMULINK.
- 5. To analyze the spectrum, in time and frequency domain, of Amplitude Modulation using MATLAB.
- 6. To generate and demodulate amplitude shift keyed (ASK) signal using MATLAB
- 7. To generate and demodulate phase shift keyed (PSK) signal using MATLAB.
- 8. To generate and demodulate frequency shift keyed (FSK) signal using MATLAB.
- 9. To generate a scatter plot for QPSK and BPSK using MATLAB.

PFFC-813 B														
	Core Elective-1 Lab													
	(Wireless communication Lab)													
				L		Т			Р		Credit	ts		
0 0 4 2														
Internal Assessment Marks 50														
			End Se	mester M	arks						50			
Course	<u>e</u>		The aim of this course is to study and understand the practical aspects of											
Object	tives:	s: wireless communication system with focus on basic digital baseband												
	communication, waveform analysis with MATLAB, channel impact on path													
			loss m	del using	g MATL	AB, vari	ious filt	er appli	cation a	and mul	tidimer	nsional		
			signal	analysis	in com	munica	tion sy	stem. T	horoug	h knov	vledge	would		
			enable	, students	to unde	erstand	, charact	erizatior	n and p	aramete	ers in w	vireless		
			comm	inication	systems				le					
Course	9		1. To	familiarize	e with so	ome adv	/anced	commur	nication	system				
Outco	mes:		2. To	familiarize	e with th	ne differ	ent wa	veform f	features	s via sim	ulation			
3. To aware about the losses in the communication channel														
4. To familiarize about the usefulness of the filters in the communication.											tion.			
	Mapping of course outcomes with program outcomes													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	N	Μ	N	М	N	N	N	М	N	S	Ν	N
CO2	М	М	W	М	N	М	N	N	N	S	Ν	N
CO3	W	М	N	N	N	М	N	N	М	S	Μ	N
CO4	М	М	М	S	N	S	М	N	М	S	М	S

1. To study the baseband communication using Trainer KIT.

2. To study the CDMA for both multipath and multiuser on Trainer KIT.

- 3. To study the spread spectrum- DSSS modulation and demodulation using Trainer KIT.
- 4. To study and familiarize with MATLAB and its function widely used in wireless communication simulation and plot using MATLAB simulation
- 5. To study and Develop an QPSK detector and understand the relation between BER and SNR
- 6. To study and understand the various waveforms, their properties and process to capture transmitted waveforms and their processing using MATLAB simulation.
- 7. To Study the Propagation Path loss Models for Free Space Propagation using MATLAB.
- 8. To Study the Propagation Path loss Models for Link Budget Equation in Satellite Communication using MATLAB.
- 9. To Study the Propagation Path loss Models for Carrier to Noise Ratio in Satellite Communication using MATLAB.
- 10. To Study the various pulse shaping filters widely used in wireless communication system
- 11. To study and understand the features of matched filter.
- 12. To study the importance of coarse and fine synchronization, effect of frequency offset and its correction.
- 13. To Study tools to find out several unknown parameters of wireless communication system through multi-dimensional signal analysis

PCEC-814														
			Opti		nmunica T	ation Sy	stem L	ab D		Credi	its			
		0								2				
Internal Assessment Marks											50			
End Semester Marks											50			
Course	The	The aim of this course is to study and understand the practical aspects of												
Objectives:	adva	advanced communication system and optical fiber. It also gives the insight												
	into	into various optical nonlinearities in optical communication and their												
	mitig	mitigation. Finally, it will provide platform for the student to design and												
	evalu	uation	of r	nodern	optic	al co	mmuni	cation	netwo	orks, v	wireless			
	com	munica	tion ne	twork a	nd OFD	M.								
<u>Course</u>	1. A	ble to	underst	and var	rious los	ses occ	curs in c	optical c	ommun	ication	system			
Outcomes:	a	ind thei	r mitiga	ition.		c								
	2. E	nables	the imp	plement	tation o	горпса	i nber c	commur	ication	link.				
	3. A	ADIIITY T	o mode	l and ai	nalyze t	ne opti	cal com	imunica	itton sys	stem to	rnigner			
		ata rat	e.	ograta	winalaa	a taab	aalaari	with a	ntical a		aiaatian			
	4. C	apable		egrate	wireles	s tech	noiogy	with 0	ptical c	ommu	lication			
		Appin	Jgy.	urso out	comos	with pr	ogram	outcom						
DO1		wapping of course outcomes with program outcomes												
P01	PUZ	PU3	P04	P05	PUb	P07	PU8	P09	P010	POII	PUIZ			
		IN C	2	IN NI					3 6	IVI C				
		M	N	S S	M	N	N		S C	5 M				
	N	MI N S MI N MI S MI MI S N N S MI N MI S MI MI												

- 1. To study the effect characteristics of Mach-Zender modulator in Opti-system.
- 2. Designing of an intensity modulator using Lithium Niobate Mach-Zehnder modulator in Opti-system.
- 3. To establish a point-to-point optical communication link on Opti-System and optical kit.
- 4. Characterization of laser diode and photodetector using simulator/light runner.
- 5. Characterization of the electrical parameter of the intensity modulator using Opti-System.
- 6. Measurement of attenuation in optical fiber using Opti-System simulator and light runner.
- 7. Measurement of dispersion in optical fiber using Opti-System simulator and light runner.
- 8. Minimization of the effect of dispersion in optical communication link.
- 9. Evaluation of power budget of an optical fiber link using Opti-System simulator and light runner.
- 10. Designing of a DWDM point-to-point link using Opti-system.
- 11. To study the effect of channel spacing and operating bit rate in DWDM optical network.
- 12. To study the effect of four-wave mixing in DWDM network in Opti-system.
- 13. To study the effect of cross-phase modulation in DWDM network in Opti-system.
- 14. Designing of an all-optical wavelength convertor using Opti-system.
- 15. Experimental study of SMF cutting and splicing.
- 16. Demonstration of SMF connection.
- 17. Designing of external metal deposition-based PCF-SPR sensor model.
- 18. Modelling of spectroscopy-based sensing setup for liquid analytes.

PCEC- 821													
Microwave Integrated Circuits													
				L		Т	•	1	Р		Credits		
				3		1		(0		4		
			Session	al Marl	ĸs					50			
			End Sei	mester	Examin	ation M	arks				50		
Course	e Objec	tives:	The ob	jective	of this	course	is to an	alyze a	nd desi	gn of va	arious s	trip	
			lines, l	aunchir	ng tech	niques,	and m	icrowav	e plann	er filte	rs; anal	yze	
			the vai	rious co	upler fo	or netwo	ork desi	gn; stud	dy the c	lifferent	devices	s of	
active microwave circuits and nonlinear RF circuits.													
<u>Course Outcomes:</u> 1. To gain knowledge about the design of various striplines, launching												iing	
and lumped, elements.													
			2. Abi	lity to d	esign ar	nd fabrio	ate var	ious mie	crowave	planar	filters.		
			3. Abi	lity to	analyze	e and i	nodel	networ	k desig	n base	d on v	various	
			cou	plers.									
			4. Sele	ect vari	ous co	mponer	nts to	charact	erize ci	rcuit ar	nd veri	fy the	
			per	forman	ces.								
	1	N	/lapping	of cour	se outc	omes wi	ith prog	ram ou	tcomes		1	1	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	
CO1	Μ	M	W	N	N	S	N	N	N	N	W	N	
CO2	S	M	Μ	N	N	S	N	N	Μ	N	Μ	Μ	
CO3	Μ	S	N	N	Μ	S	N	N	N	N	N	N	
CO4	Ν	N	Μ	S	N	Μ	Μ	Ν	Μ	N	Μ	Μ	
				<u>Uni</u> t	<u>t-I</u>							12 hrs	
Introd	uction:	Review	of trans	mission	lines,	foundat	tions of	f micros	strip lin	es, stri	plines,	higher	
mode	s in mio	crostrips a	and strip	lines,	slot line	es, copla	anar wa	veguide	es, copl	anar str	ips, lau	nching	
techni	ques -	coaxial lir	ne to mio	crostrip	transiti	on, rect	angulai	r waveg	uide to	microst	rip tran	isition,	
micros	strip to	slot-line	transitio	on, mic	rostrip	to copl	anar w	aveguid	le (CPV	V) trans	ition, lu	umped	
compo	onents -	capacito	rs, induc ⁻	tors and	l resisto	ors.							
				Unit	-11							12 hrs	
Micro	wave p	lanar filte	ers: Perio	odic stru	uctures,	filter d	esign by	/ the im	age par	ameter	method	l, filter	
design	by th	e insertio	on loss	method	l, filter	transfo	rmatio	ns, filte	er imple	ementat	ion, ste	epped -	
imped	ance lo	w-pass fil ⁻	ters, cou	pled lin	e filters	, filters (using co	upled r	esonato	ors.			
		•	-	Unit	-111	-		•				12 hrs	
4-Port	netwo	ork design	n: Revie	ew of n	etwork	design,	even	and od	d-mode	analysi	is, bran	ch-line	
couple	e, bran	ch-line co	oupler v	vith im	proved	couplir	ng perf	ormanc	e, bran	, ch-line	couple	r with	
multip	le sect	ions, intr	oductior	n to hy	brid-rir	ng coup	lers, qu	ualitativ	e descr	iption a	and coi	mplete	
analys	is of hy	brid-ring	couplers	, hybrid	-ring co	ouplers v	with mc	dified r	ing imp	edances	s, introd	uction	
to par	allel-co	upled line	es and di	rectiona	al coupl	ers, eve	n and o	dd-ana	lysis of	parallel-	coupled	d lines,	
coupled-line parameters, multiple-section directional couplers.													
Unit-IV 12 hrs													
Nonlinear RF circuits: Review of non-linear circuits, power gain relations, simultaneous conjugate													
matching, stability considerations, power gain for matched, unmatched, unilateral conditions,													
noise	charact	erization	and des	sign opt	tions, sv	witches	- PIN (diode sv	witches	FET sv	witches,	mems	
switch	, varial	ble atten	uators,	phase s	shifters,	detect	ors and	d mixer	rs, amp	lifiers	- small	signal	
amplif	iers <u>, lo</u> v	v noise ar	nplifiers,	power	amplifi	ers, osci	llators.						

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Microwave Engineering	D.M. Pozar	3 rd Ed., John Wiley &									
		Sons, 2004									
2. Microwave Engineering Using	E.H. Fooks and	Prentice-Hall, 1990									
Microstrip Circuits	Zakarevicius										
3. Networks and Devices using Planar	Franco di Paolo	CRC Press, 2000									
Transmission Lines											
4. RF Circuit Design	R. Ludwig and	Pearson Education,									
	P. Bretchko	2000									
5. Microwave and RF Engineering	Roberto Sorrentino	John Wiley & Sons,									
	and Giovanni Bianchi	2010									

PCEC-822													
					V	LSIDes	ign	1		1			
				L			Т	F	Р		Credit	S	
				3			0	(0	3			
			Session	nal Mark	S					50			
			End Se	mester E	Examin	ation N	/ arks			50			
<u>Course</u>	<u>e Objec</u>	tives:	The ob	jective o	f VLSI	Design	is to he	lp the s	tudent	s to get	brief kn	owledge	
			of MO	S, PMOS	S, NMC	DS, CM	OS &Bi	-CMOS	techn	ologies.	It also	aims at	
			introdu	icing the	e fund	lamenta	al princ	ciples o	of VLSI	circuit	design	and to	
			examin	ie the b	asic bi	uilding	DIOCKS	or gate	e level	design	and su	osystem	
Course	- Out er		design.	dal tha k	achavic	our of N	100 tra	ncistor	andun	dorstop		litching	
Course		mes:	characteristics of inverter									ntching	
Characteristics of inverter.									c				
2. Design combinational and sequential circuits using Civios gates.									s. Na σiven				
VLSI drcuit and analyze the performances of VI SI circuits									i a given				
			4. Ana	alvze and	l desigr	n VLSI s	ubsvste	em struc	ctures.				
		Mapping of course outcomes with program outcomes											
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	N	Ν	N	Ν	S	Μ	М	N	N	N	W	N	
CO2	S	Μ	Μ	Ν	Ν	S	М	Ν	Μ	N	Μ	М	
CO3	S	Μ	Ν	S	Ν	Ν	N	N	W	N	Μ	М	
CO4	Ν	S	Μ	Ν	Ν	S	W	Ν	Ν	N	Μ	М	
				<u>Unit</u>	<u>t-l</u>							14 hrs	
Device	Device physics: Review of MOS transistor theory, MOS device equations- basic dc equations,												
conce	pt of th	reshold	l voltage	, second	order	effects	and sm	all signa	al ac ch	aracteri	stics.		
Invert	er analy	ysis: Co	mpleme	entary CN	MOS in	iverter,	DC cha	iracteris	stics, ra	tio, naise	e margii	n, CMOS	
inverte	er as a	n ampl	ifier, sta	atic load	CMOS	S inver	ters, ps	eudo N	IMOS i	nverter,	satura	ted load	
inverte	ers, cas	code ir	iverter,	TTL inte	rtace ii	nverter	, differe	ential in	iverter,	transm	ission g	ate, tri -	
state i	nverter	and Bi	-CIVIOS I	inverter.								1.4 h.m.	
Fabria					<u>-11</u>	~	06 000				ملتمارط	14 nrs	
Fabric	ation p	rocess	: Basic I	vius lec	and lat	gy, INIVI			s proce	ss now,	SLICK O	lagrams,	
Circuit	t chara	ayout (iesign ai	norform		ch up ii	ion · Po	s. cistance	ac and	canacita	nco ost	imation	
SDICE	moddi		tching ch	periori	stics d		odels r	iso and	fall tim	capacita	nce est		
body	effect	CMOS	gate tr	ansistor	sizing	nowe	or dissir	nation	design	margin	ing and	l scaling	
princir	nles	civics	guie ii	011515101	5121116,	, powe	. 01551p	Jacion,	ucsign	margin	ing une	scanng	
pinter	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Unit-	-111							10 hrs	
CMOS	o drcuit	and lo	ogic desi	ign: CM	OS logi	ic gate	design,	basic p	ohysica	l design	of sim	ple logic	
gates.	смоѕ	logic s	tructure	s, clockir	ng strat	tegies,	low por	wer CM	IOS log	ic struct	ures, cl	nip input	
and ou	utput (I,	/O) stru	uctures.										
				<u>Unit-</u>	-IV							10 hrs	
VLSI d	esign r	nethod	lologies:	VLSI de	esign fl	ow, str	uctured	d desigr	n strate	gies, VL	SI desi	gn styles	
and chip design options.													
Subsystem structures: Arithmetic logic unit (ALU), shifters, memory elements, high density													
memo	memory structures, finite state machines (FSM) and programmable logic arrays (PLA)												

RECOMMENDED BOOKS										
Title	Author	Publisher								
1. CMOS Digital Integrated Circuits	Sung- Mo Kang, Yusuf	ТМН, 2003								
	Leblebici									
2. Basic VLSI Design, Systems And	Pucknell DA and Eshraghian	PHI, 1988								
Circuits	к									
3. Integrated Circuits	KR Botkar	Khanna Publishers,								
		2015								

	PEEC-821A											
				Advan	ced Dig	ital Sig	nal Proc	essing	D		Cuadita	
				L 2			1		P 0			
			Cossion	3 al Mark			0		0		3	
			Session	al Wark	s ivomino	tion M	arke				50	
Course	Ohiec	Hives	The sin	nester E		is to a	arks	nowled		liscrata	JU time sv	stoms
<u>course</u>		LIVES.	This co	urse will	l contai	n study	of diffe	prent tr	ansforn	n metho	nds such	1 as 7-
			transfo	rm. disc	rete Fo	urier t	ransforr	n (DFT)	and f	ast Four	rier trar	sform
			(FFT) ai	nd how I	FIR and	IIR filt	ers can	beimple	mente	d, and th	neir stru	ctures
			will be i	realized.	Then th	he cour	se will s	tudy th	e conce	pt of lin	ear prec	diction
			and est	timation	, equal	ization	algoritl	hms an	d the	concept	of mu	ltirate
			signal p	rocessin	ig and s	ample i	rate con	version				
Course	e Outco	mes:	1. Mas	ter the	represe	entatio	n of dis	crete-ti	me sigi	nals in t	the free	luency
domain, using z-transform, discrete Fourier transform (DFT) and												
			disc	rete cosi	ine tran	sform.			. .	C		
	2. Onderstand the implementation of the DFT in terms of the FFT, as well as some of its applications											
				ome or r	ts appli		EIR and		are and	how to	docian	filtors
with desired frequency responses.												
4. Ability to implement adaptive signal processing algorithms based on												
second order statistics.												
5. Analyze various multi-rate processing techniques.												
			Mappin	g of cour	rse outo	comes v	vith pro	gram o	utcome	es		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12
CO1	S	Μ	N	Ν	Ν	Ν	М	Ν	Ν	Ν	Μ	N
CO2	Μ	N	Ν	Ν	Ν	Μ	М	N	N	Ν	W	Ν
CO3	S	Μ	Μ	Μ	Ν	S	N	N	N	Ν	Μ	Μ
CO4	N	S	N	N	Μ	Ν	Μ	N	M	N	M	N
CO5	Μ	N	N	N	S	Μ	S	N	N	N	N	N
D .		•		<u>Uni</u>	<u>it-I</u>				<u> </u>		1	.2 hrs
Discre	te time	signa	is and s	ystems:	Advar	ntages	and lim	itations	of dig	ital sign	al proce	essing,
review	tion and	d appli	me sign	ais anu Sfidet i	system	anaiysi L docim	s using	Z trans		and its	er trans	siorm,
multin	nedia co	u appii nding		, ויזט ונ		i uecim		gontini	IS, DCT		applicat	
marcin		Jung.		Uni	t-II						1	2 hrs
Desigr	n of digi	tal filte	ers: Revi	ew of str	ructures	s for dis	crete ti	me svst	ems, de	sign of a	digital F	IR and
IIR filt	ers.							/	,	0	0	
Real t	time D	SP: Ge	neral a	nd spec	ial pur	pose h	ardware	e for D	SP, rea	al time	digital	signal
proces	sing usi	ing TM	S320 far	nily, imp	lement	ation of	f DSP al	gorithm	on digi	tal signa	al proces	ssors.
				<u>Unit</u>	t-111							12 hrs
Estima	ation ar	nd pred	diction:	Linear p	redictio	n and	optimur	n linear	filters,	forward	d & bac	kward
linear	predict	ion, Le	vinson-E	Durbin a	lgorithr	n, Schu	ır algori	thm, pr	opertie	s of line	ear preo	diction
error filter, Wiener filters for filtering and over sampling.												
Equalization algorithms: Adaptive equalizer, the zero-forcing algorithm, decision feedback												
equali	zer, blo	ck dec	ision tee	edback e	equalize	er, LM S	algorit	hm cor	ivergen	ce prop	erties o	t LMS
algorit	nm, rec	ursive	ieast squ	lares alg	orithm,	Kalma	n filterin	ig, blinc	equaliz	zation.		

<u>Unit-IV</u>		12 hrs								
Multi-rate signal processing: Introduction, decimation and interpolation, sample rate										
conversion, efficient poly-phase structures, design of phase shifters, filter banks, quadrature										
mirror filters, applications of digital signal processing.										
RECOMMENDED BOOKS										
Title	Author	Pu	blisher							
1. Digital Signal Processing	John G.Prokis	Pre	ntice Hall of India							
2. Digital Signal Processing Oppenheuim Prentice Hall of India										
3. Digital Signal Processing: A Computer-	Sanjit K. Mitra	Tat	a McGraw Hill							
Based Approach										

PEEC-821B Soft-Computing										
	L	Т	Р	Credits						
	3	0	0	3						
	Sessional Marks			50						
	End Semester Examination	ion Marks		50						
<u>Course</u> Objectives:	The course aims to learn the key aspects of Soft computing. The course will study how to apply fuzzy logic and reasoning to handle uncertainty and solve engineering problems; understand the features of neural network, and its applications; know about the components and building block hypothesis of genetic algorithm. Next focus to gain insight onto neuro fuzzy modeling & control and gain knowledge in machine learning through Support vector machines									
<u>Course</u> <u>Outcomes:</u>	 Analyze the genetic algorithms and their applications Gain knowledge to develop genetic algorithm and support vector machine- based machine learning system. Write genetic algorithm to solve the optimization problem. Analyze various neural network architectures. Understand fuzzy concepts and develop a fuzzy expert system to derive decisions. Able to model neuro fuzzy system for data clustering and classification 									

		Ρ										
		0										
	PO1	2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	S	Μ	N	N	N	Μ	N	Μ	W	N	Ν	Ν
CO2	S	Μ	М	N	Μ	Μ	S	N	N	N	Μ	Μ
CO3	Ν	Μ	N	N	N	Μ	Μ	N	N	S	Μ	М
CO4	Ν	Μ	N	N	N	W	N	Μ	Μ	N	Μ	W
CO5	S	Ν	S	N	N	S	S	N	N	N	Μ	М
CO6	S	Ν	W	N	S	W	Μ	N	N	N	Ν	Ν
<u>Unit-I</u>												12 hrs
1												

Mapping of course outcomes with program outcomes

Neural network fundamentals: Basic concepts, human brain, artificial neuron model, neural network architectures-Rosenblatt's perceptron, ADALINE and MADALINE networks, neural network characteristics, learning methods, architecture taxonomy, bac k-propagation network (BPN), BPN architecture, perceptron model, single layer network, multilayer perceptron model, back-propagation learning, back-propagation algorithm, tuning parameters effect and parameter selection, application of ANN to channel equalization.

<u>Unit-II</u>	12 hrs					
Fuzzy logic fundamental: Crisp sets, fuzzy sets, membership f	unction, basic fuzzy set					
operations, fuzzy set properties, crisp relations, fuzzy relations,	fuzzy Cartesian product,					
operation on fuzzy relations, fuzzy systems, crisp logic, predicate logic, fuzzy logic, fuzzy rule						
based system and defuzzification methods.						

Unit-III12 hrsGenetic algorithm fundamentals: Basic concepts, biological background, working principle,
encoding, fitness function, reproduction including roulette-wheel selection, Boltzmann
selection, tournament selection, rank selection and steady state selection, design of rapid
nickel cadmium battery charger and rule base generation from numerical data using GA.

Unit-IV:12 hrsGenetic modeling: Inheritance operators, cross-over-single site crossover, two-point crossover,
multipoint crossover, uniform crossover, matrix crossover, crossover rate, inversion, deletion
and duplication, mutation operator, generation cycle, convergence of genetic algorithms.

	RECOMMENDED BOOKS									
	Title	Author	Publisher							
1.	Neural Networks, Fuzzy Logic and	S. Rajasekaran and G.A.	PHI							
	Genetic Algorithms	Vijayalakshmi Pai								
2.	Artificial Neural Networks	B. Yegnarayana	PHI							
3.	Introduction to Applied Fuzzy	Ahmad M. Ibrahim	PHI							
	Electronics									
4.	Fuzzy Logic with Engineering	J T Ross	McGraw-Hill							
	Applications									

					P	EEC- 82	1C	-					
				U		nage Pr T	ocessin	Ig D			rodits		
				3		0		0		C	3		
			Session	al Marks	5	-				50			
			End Sen	nester E	xamina	tion Ma	arks			50			
Course	2		Aim of t	he cours	se is to	study th	ne fund	amenta	ls of dig	digital image processing.			
<u>Object</u>	tives:		It also g	ives dee	p insigh	nt in to t	the basi	c of ima	ige pro	cessing c	operatio	ns like	
			filtering	of noise	e and ir	nage en	hancer	nent; de	esign, a	nalyze a	nd impl	ement	
			algorith	ms for	advanc	ed imag	ge anal	ysis like	e image	e compr	ession,	image	
	<u> </u>		reconstr	uction,	image s	segmen	tation a	nd edge	e detect	ion tech	niques.		
Course	e Outco	mes:	1. Exan	nine vari	ious typ	oring to	nages, II chniquy	ntensity	transfo	ormation	is and		
			2. Shov	v how	higher	-level i	mage	concept	s such	as ed	ge dete	ection.	
			segn	nentatio	n, repre	esentati	on can	be impl	emente	d and us	sed.	,	
			3. To	manipul	ate bo	oth bin	ary ar	nd gray	scale	digital	images	using	
			mor	ohologic	al filter	s and o	perator	s to ach	ieve a d	lesired r	esult.		
	4. Apply image processing algorithms in practical applications.												
	DO1	000	Mapping	g of cou	rse out	comes v	vith pro	ogram o	utcome		DO11	DO12	
<u> </u>	P01	POZ	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	
CO1	5 C	IVI M		S				N	IN N	N	IN M	IN N	
CO2	N	N	M	S	N	M	M	N	S S	N		N	
CO4	M	S	M	N	N	S	M	N	M	N	M	M	
				Unit	-1		I					12 hrs	
Digita	l image	fund	amentals	: Scene	s and	images,	differe	ent stag	es of i	mage p	rocessin	ig and	
analys	is, com	ponen	its of ima	ige proc	essing	system,	visual	prelimir	naries,	brightne	ss adap	otation	
and co	ontrast,	acuit	y and co	ntour, t	exture	and pa	attern o	liscrimir	nation,	shape c	letectio	n and	
recogr	nition, c	olor p	erception	, image	format	ion, geo	metric	and pho	otometr	ic mode	ls, digiti	zation	
includ	ing sam	pling,	quantizat	ion and	digital	image v	visual de	etails.				12 6 40	
Imaga	onhon		t and ra		<u>-11</u>	tract int	onsifier	tion co	moricio	a of line	or strat	12 nrs	
non-lir	ennan Dear str	etchin		roperty	modifi	cation h	nistogra	m sneci	fication	g of fifte	ing gree	.cning, v lovol	
	urrence	matr	ix and loc	al contr	ast stre	tching.	smooth	ning incl	uding i	nage av	eraging.	mean	
filter,	ordere	d sta	tistic filte	er, edge	e -prese	erving s	mooth	ing and	l low	pass fil	tering,	image	
sharpe	ening i	ncludi	ng high-	pass fil	Itering	and h	iomomo	orphic	filtering	g, imag	e resto	pration	
fundaı	mentals	, mini	imum me	ean squ	are err	or rest	oration	least s	quare	error re	storatio	n and	
constr	ained le	ast sq	uare erro	r restor	ation.								
				<u>Unit-</u>	<u> </u>							12 hrs	
Image	compr	essior	1: Fundan	nentals	of ima	ge com	pressio	n, error	criterio	on, lossy	compr	ession	
includ	ing tra	Instori	n comp	ression,	block block	trunc	cation ffman	compre	ession,	vector	quant	zation	
compression and lossless compression including Huffman coding method.													
Image	segme	ntatio	n and eq	lge dete	ection ·	Region	extract	ion, nix	el base	d annro	ach inc	luding	
feature thresholding, optimum thresholding and threshold selection methods, edge detection													
fundai	fundamentals, derivative operators including Roberts, 4-neighbour, Prewitt and Sobel												
operat	operators, Canny edge detector, Laplacian edge detector, Laplacian of Gaussian edge detector.										ge dete	ctor.	

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Digital Image Processing	Rafael C. Gonzalez	Pearson									
2. Digital Image Processing and Analysis	Chanda and Majmuder	РНІ									
3. Computer Vision and Image	S Nagabhushana	New Age International									
Processing											

	PEEC-821 D											
				Artifici	al Intel	ligence T	and De	ep Lear	ning	· · · · ·	`rodits	
		-		2		0		<u>г</u> 0			2	
		-	Sessions	J Marke		0		0			50	
		-	End Son	nostor F	vamina	tion Ma	arks				50	
Course	<u> </u>			ulability	ofa			of Imag	b and	Video	data ov	or the
Object	ives:		internet	has m	nade da	ata anal	vsis ar	nd interi	oretatio	n a cha	allengin	g task.
			Deep Le	arning l	has prov	ved itse	lf to be	a possik	ole solut	ion to s	uch Cor	nputer
			Vision ta	asks.								
			This co	ourse p	orovides	intro	ductior	to tra	aditiona	l Mach	nine Le	earning
			approac	hes, e.	g., Baye	esian Cl	assifica	ition, Mi	ultilayer	Percep	tron et	c. and
			then m	ove to	moder	n Deep	Learr	ning arcl	hitectur	es like	Convol	utional
Neural Networks, Autoencoders etc. Upon completing the course,												
students will acquire the knowledge of applying Deep Learning techniques												
to solve various real-life problems.												
Course	e Outco	mes:	1. Und	erstand	the diff	rerence	betwe	en classi		and regr	ession.	-
2. Appreciate the optimization techniques and unterentiate between									1			
overnitung and regularization.												
	5. Analyze and demorite											
A Acquire the knowledge of latest trends in deep learning demain and												
4. Acquire the knowledge of latest trends in deep learning domain and												
			vario	ous othe	er techn	iques.						
	PO1	DO 2				comes v	NITH PR	ogram o		S PO10	DO11	PO12
CO1	3	3	2	1	PO5	1	1	1	1	010	2	2
CO1	3	3	2	1	1	1	2	1	1	0	3	2
CO3	3	3	3	3	2	2	2	1	1	0	3	2
CO4	3	3	3	1	3	2	2	1	1	0	3	2
				Unit	t-l		1				I	12 hrs
Introd	uction:	Introd	luction t	o Deep	Learn	ing, His	tory o	f Deep	Learnin	g, Baye	sian Le	arning,
Decisio	on Surfa	ices, Li	near Clas	sifiers,	Linear	Machine	es with	Hinge L	oss. Opt	imizatio	n Tech	niques,
Gradie	ent Desc	ent, St	ochastic	GD, Bat	ch Opti	mizatior	n, Mom	ientum C	Optimize	er, RMS I	Prop, Ad	lam.
				<u>Unit</u>	<u>-11</u>							12 hrs
Neura	l Netw	ork A	rchitectu	ures: Ir	ntroduc	tion to	Neur	al Netw	vork, F	eed Fo	rward	Neural
Netwo	orks, Mi	ultilaye	r Percep	otron, B	ack Pro	opagatic	n Lear	ning, Co	onvoluti	onal Ne	ural Ne	etwork,
CNN C	operatio	ns, Bu	liding bio	DCKS OT	CNN, I	ranster	Learnii	ng, Goog	je net,	Res Net	t. Trans	former
	architecture.											
Regularization: Bias Variance Trade-off, L2 regularization, Early stopping, Dataset												
Unit-III 12 hrs												
Normalization in Neural Network: Revisiting Gradient Descent. Effective training in Deep Net -												
early s	early stopping, Dropout, Batch Normalization. Instance Normalization. Group Normalization.											
Unsupervised Learning: Unsupervised Learning with Deep Network, Autoencoders, Denoising												
auto encoders, Sparse auto encoders, Variational Autoencoder, Encoder Decoder Models,												
Attent	ion Me	chanisr	n, Atten t	tion ove	er image	es.						

Unsupervised Learning: Unsupervised Learning with Deep Network, Autoencoders, Denoising auto encoders, Sparse auto encoders, Variational Autoencoder, Encoder Decoder Models, Attention Mechanism, Attention over images.

Unit -IV12 hrsDeep Learning Architectures: Recent Trends in Deep Learning Architectures, Residual Network,
Skip Connection Network, Classical Supervised Tasks with Deep Learning, Image Denoising,
Semantic Segmentation, LSTM Networks. Generative Modeling with DL, Generative Adversarial
Network.

Recommended Books										
Title	Author	Publisher								
1. Deep Learning	Ian Goodfellow and Yoshua Bengio	An MIT Press book. (2019).								
2. Deep Learning for Coders with Fastai and PyTorch	Jeremy Howard and Sylvain Gugger	O'Reilly (2020).								
3. Deep Learning From Scratch	Seth Weidman	O'Reilly (2020).								
4. Deep Learning with PyTorch	Eli Stevens, Luca Antiga, Thomas Viehmann	Manning Publications. (2019).								

PEEC-822A												
			[E	lectronio	: Produ	ict Desig	gn		r		
				L		Т			P		Credits	
				3			0		0		3	
			Session	nal Mar	ks						50	
			End Se	mester	Examina	ation N	larks				50	
Course	e Objec	tives:	The ob	jective	of this c	ourse i	s to pro	vide ad	equate	knowled	dge abo	ut the
			reliabil	ity, con	itrol pai	nel de	sign, the	ermal o	conside	ration a	nd pac	kaging
			require	ed for el	ectronic	indust	ry.					
Course	<u>e</u>		1. Exp	olain reli	ability a	nd met	thods of	solving	comple	ex proble	ems.	
<u>Outco</u>	mes:		2. Exp	lain the	e importa	ance of	aesthet	tics and	ergono	mics in	electror	nics
			pro	duct de	sign.							
			3. Exp	lain nee	ed of cor	ntrol pa	anel desi	ign and	therma	I consid	eration	in
			ele	ctronic i	industry							
			4. Exp	lain the	e types o	finter	connecti	ons for	packag	ing.		
			Mapping	g of cou	rse outo	omes	with pro	ogram o	utcome	es		
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	W	N	N	N	N	Μ	N	M	N	N	N	N
CO2	M	M	S	M	N	S	M	N	N	N	Μ	M
CO3	M	M	S	S	N	S	M	N	S	N	S	M
CO4	N	M	M	N	N	Μ	N	N	Μ	N	Μ	N
				<u>Un</u>	<u>it-l</u>							11hrs
System reliability concepts: Introduction to concepts of reliability, nature of reliability												
proble	ems in	electro	onics e	quipme	nt, seri	es cor	nfigurati	ons, pa	arallel	configur	ation,	mixed
config	uration,	, metho	ods of s	olving c	complex	systen	ns, mea	n time	to failu	ire (MT	TF) and	l mean
time	betwee	n failu	ire (M	rB) of	system	s. mai	ntainabi	ility, av	/ailabilit	ty conc	epts, s	ystem
downt	ime, m	ean tim	ne to rep	bair (M	ΓTR), fau	It tree	analysis	s-conce	pts and	proced	ures, ru	les for
fault ti	ree con	structio	n.									
				<u>Uni</u>	<u>it-II</u>							12hrs
Ergono	omics a	and aes	sthetics	in elec	tronics	produ	ct desig	n: Ove	rview o	of electr	onics p	roduct
design	, top-de	own an	id botto	m-up a	pproach	, consi	dering p	ower s	upply c	lesign a	s an exa	ample,
ergono	omics ai	nd disp	lay w.r.t.	ergono	mics an	d aesth	etics co	nsidera	tion .			
				<u>Uni</u>	<u>t-III</u>							12 hrs
Contro	ol panel	design	and the	ermal c	onsidera	ation: 1	Types of	contro	ls, desig	gn and o	rganiza	tion of
contro	ol panel	, engin	eering c	onsider	ation, la	yout o	fcompo	onents,	selectio	on of ma	aterials,	sheet
metals	s and pl	astic, st	ructural	design	and cor	itrol ca	binets fa	abricati	ons, the	ermal m	anagem	ent of
electro	onics eo	quipme	nt, ther	mal des	sign con	siderat	tion, coi	mponer	nt level	, board	level, s	ystem
level, t	ans and	d syster	n operat	ing cha	racterist	ics, he	at sink d	esign.				
				Uni	<u>t-IV</u>							10 hrs
Packag	ging: D	esign	consider	ation f	or inter	-conne	ections,	types	of inte	r-conne	ctions,	wires,
cables	, conne	ctors, t	reatmen	t of vib	ration, g	roundi	ng					
				F	RECOMI	MENDI	ED BOO	KS				
	Tit	le					Autho	r		Publis	her	
1. Ma	1. Materials and Processes in Ernest Paul De 12"Edition, John Wiley											
Mai	nufactu	ring				Rona	ald A. Ko	hser	& S	ons.		
2. Adv	anced T	hermal	of Electr	onics Ec	quipmen	t Raip	h Rems	ourg	Spr	inger, 20)11	
3. Prod	duct De	sign of	Electron	ics Eaui	pment	V.S.	Bagad		4 th	Edition	2009,	
		0		-1	•		0		Teo	chnical P	ublicati	on

PEEC-822B															
				S	atellite	Commu	unicatio	n		T					
				L			Т		Р		Credits				
				3			0		0		3				
			Sessiona	Marks							50				
			End Sem	ester Ex	aminati	on Mar	rks				50				
Course	<u>e</u>		This cou	rse pro	vides fu	Indame	ental kn	owledg	e abou	t orbita	al theor	y and			
<u>Object</u>	tives:		satellite	link de	esign. S	Student	ts will	unders	stand t	he role	e of v	arious			
			modulati	on, mul	tiplexing	g and r	nultiple	access	technic	ques us	ed in sa	itellite			
			communi	cation r	hetwork	s. study	y of vari	ous sat	ellite se	ervices a	lso pres	sented			
			in this co	urse.	1										
Course	<u>9</u>		1. Visuali	ze the a	rchitect	ure of s	satellite	system	s as a m	eans of	high sp	eed,			
Outco	mes:		nign ra	inge cor	nmunica	ation sy	vstem.								
			2. State v	arious a	ispects r	elated	to satel	lite syst	ems suc	n as orr	ILTAI				
			equation	ons, suc	o-system	is in a s	ateinte,	IINK DU	aget, mo	odulatio	in and				
3. Solve numerical problems related to orbital motion and design of link															
budget for the given parameters and conditions.															
			Manning		rse outo	omes	with pro	gram o	utcome	ç					
	PO1	PO	2 PO3	PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	M	W	/ N	N S N W N M W N N N											
CO2	М	N	N	N S S N N N M N N											
CO3	W	Μ	Μ	M N M S N S N S M M											
<u>Unit-I</u> 12hrs															
Architecture of satellite communication system: Principles and architecture of satellite												atellite			
comm	unicatic	on, br	rief history	of sate	llite syst	tems, a	dvantag	ges, disa	advanta	ges, app	lication	s, and			
freque	ency bar	nds u	sed for sat	ellite co	mmunic	cation a	and thei	r advan [.]	tages/di	rawback	s.				
Orbita	l analys	sis: C	rbital equ	ations,	Kepler's	laws o	f planet	ary mo	tion, ap	ogee ar	nd perig	gee for			
an elli	iptical d	orbit,	evaluatio	n of ve	locity, c	orbital	period,	angula	r veloci	ty etc o	of a sat	tellite,			
conce	ots of so	olar d	lay and sid	ereal da	IY.										
				<u>Un</u> i	it-II							12 hrs			
Satelli	te sub-	syste	ms: Archit	ecture a	and role	s of va	rious su	b-syste	ms of a	satellite	e systen	n such			
as tele	emetry,	track	ing, comm	nand an	d monit	oring ([·]	TTC & M	И), attit	ude and	l orbit c	ontrol s	system			
(AOCS	5), œmm	nunic	ation sub-	system,	power s	sub-syst	tems, ar	ntenna	sub-syst	em.					
Satelli	te sub-	syste	ms: Archit	ecture a	and role	s of va	rious su	ıb-syste	ms of a	satellit	e syster	n such			
as tele	emetry,	track	king, comn	nand an	d monit	oring (TTC& N	1), attit	ude and	l orbit c	ontrol	system			
(AOCS	5), œmm	nunic	ation sub-	system,	power s	sub-sys	tems, ar	ntenna	sub-syst	em.					
				<u>Uni</u>	<u>t-III</u>							10 hrs			
Satelli	te link	budg	et: Flux de	ensity a	nd recei	ived sig	gnal pov	ver equ	ations,	calculat	ion of s	system			
noise	temper	ature	e for sate	llite rec	eiver, n	noise p	ower c	alculatio	on, draf	fting of	satellit	e link			
budge	t and C	C/N r	atio calcu	lations	in clear	air an	d rainy	conditi	ons, ca	se stud	y of pe	rsonal			
comm	unicatio	on sys	stem (sate	lite tele	phony)	using L	EO.								
				<u>Uni</u>	<u>t-IV</u>							14hrs			
Typica	i pheno	omen	ia in satell	ite com	municat	non: So	blar ecli	pse on s	satellite	, its effe	ects, rer	nedies			
for ec	iipse, su	in tra	ansit outag	ge phen	omena,	its effe	ects and	a remed	ales, Do	ppier fr	equenc	y snift			
pneno	mena a	na e	xpression	or Dop	pier shift	t, modi			inple ac	cess sch	iemes u	ised in			
satellit	te com	muni	cation, ty	pical ca	ase stud	ales of	VSAT,	DR2-L	v satell	ites an	a tew	recent			
comm	unicatio	on sat	tellites lau	nched b	y NASA,	/1580,0	JPS.								

RECOMMENDED BOOKS											
Title	Author	Publisher									
1. Satellite Communications	Timothy Pratt and	Wiley India, 2nd edition,									
	Others	2010.									
2. Fundamentals of Satellite	S. K. Raman	Pearson Education India,									
Communication		2011									
3. Digital Satellite Communications	Tri T. Ha	Tata McGraw Hill, 2009									
4. Satellite Communication	Dennis Roddy	McGraw Hill, 4th Edition, 2008									

PEEC- 822 C																
					gital C	rcuit Lo	gic Des	ign r	2		Crodite					
		-		2		0			- 1		2	>				
		-	Session	3 al Marke		0		,	,		50					
		-	End Ser	nester F	, xamin:	ation M	arks				50					
Course	Obiect	ives:	The ob	ective o	f this d	course is	s to pro	vide a	compre	hensive	unders	tanding				
			of how	logic ci	rcuits a	are ana	lyzed, d	lesigned	l, verifi	ed, test	ed and	further				
			used to	solve ei	nginee	ring pro	blems.	Topics i	, n seque	ential cir	cuit des	sign are				
			treated	, includi	ng fini	te state	machii	nes, Me	aly and	l Moore	e model	s, state				
			diagram	ns and st	tate ta	bles, op	timizati	on, asy	nchrond	ous sequ	uential	circuits,				
			and rac	es and	hazard	s; analy	ze and	design	simple	system	s comp	osed of				
			prograr	nmable l	ogic, s	uch as R	OMs, P	LDs, FP	GAs an	d CPLDs	5.					
Course	Outco	mes:	1. To l	earn diff	erent	types of	^f digital	system	s and to	o under	stand a	nd deal				
			with	various	practio	cal issue	s relate	d to the	ir desig	n.						
			2. Able	to de	sign,	simulate	e, and	built	synchro	nous s	equent	ial and				
asynchronous sequential circuits.																
	3. Ability to analyze and design simple systems composed of															
	programmable logic, such as ROMs PLDs, FPGAs and CPLDs.															
	PO 1	PO2		PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	S	S	S	N	N	S	N	N	M	N	M	N				
CO2	M	Μ	S	S	Ν	S	М	N	М	N	S	М				
CO3	Μ	S	S	М	Μ	S	М	N	М	N	S	S				
			•	Uni	t-l	•						12 hrs				
Synchr	onous	FSM de	esign : Re	view of	digital	concep	ts, MSI	and LSI	circuits	and th	eir appl	ications,				
synchr	onous s	state m	nachine	design a	nd ana	alysis-m	odels, l	atches	and flip	-flops,	setup a	nd hold				
times,	tristate	logic a	ind buss	es, Meal	y and I	Moore F	SM des	sign, des	sign of i	terative	circuits	, timing				
analysi	s of FSI	Ms, FSN	V optim	ization, k	oinary a	and one	-hot end	oding a	nd pipe	lining.						
				<u>Unit</u>	-11							12 hrs				
Dealin	g with	asynch	nronous	inputs:	Synchi	ronizers	and m	eta-stal	bility, as	synchro	nous m	achines				
analysi	is and d	esign-	models t	for asynd	chrono	us FSM:	s, detec	tion and	d elimin	ation of	f timing	defects				
in asyn	ichrono	us FSIV	ls- cycles	s, races a	nd haz	ards.										
				Unit	<u>-111</u>				1			12 hrs				
Сюск	distribu	i non : C	LIOCK SKE	eW, IOW-	SKEW (CIOCK DU	iπers, z	ero dela	ay butte	ers - PL	L, delay	/-locked				
ioops,	unning a	anaiysis	S OF SYLL		Source	e synchi	onousa		Jeuueu		is interi	12 hrs				
Momo	ry dovi	icoc: P		<u>Unit</u>	<u>-iv</u> abla ic		vicos (D		nd prog	rammal	alo gate					
archite	octure A	ices. n	architer	tures of		designi	nces (P	DIDs F	DGAs a		Jie gate	e allays				
					IFUA,	uesigiiii	ig with	F LD3, I			/3.					
Title Author Publisher																
1. Engineering Digital Design Richard F Tinder 2nd Ed., Academic Press, 2000												00				
2. Digi	tal Desi	gn-prin	ciples an	d practice	es Joh	n F Wak	erly	3rd E	d., Pears	son Edu	cation A	sia,1999				
3. Dig	gital Lo	gic and	d State	Machine	e Dav	id J Con	ner	3rd E	d., Oxfo	rd Univ	ersity Pr	ess				
Des	sign,							<u> </u>								
4. An	Enginee	ering Ap	proach	to Digita	l Will	liam I Fl	etcher	PHI, 2	1980							
Des	sign															

	PCEC-823												
					VLS	I Design	Lab						
			L			Т			Ρ		Credit	ts	
			0			0			4		2		
			Internal A	Assessm	ent Ma	rks					50		
	End Semester Marks 50												
Course	Durse To introduce the fundamental principles of VLSI circuit design in CMOS												
<u>Object</u>	<u>Objectives</u> : technology and to examine performance parameters of combinational												
	circuits; design, layout and simulation of combinational circuits and												
	amplifiers.												
Course	<u>e</u>		5. Ability	to anal	yze CM	OS inve	rter.						
<u>Outco</u>	mes:		6. Ability	to esti	mate ar	nd comp	oute the	e resista	nce, ca	pacitanc	e, indu	ctance	
			and po	ower co	nsumpt	ion of a	NMOS	/CMOS.					
			7. Ability	to desi	gn logi	c circuit	layouts	s for bo	th statio	CMOS	and dy	ynamic	
			clocke	d CMO	S circuit	s.							
			8. Be ab	le to co	omplete	e a sign	ificant '	VLSI de	sign pr	oject ha	aving a	set of	
			object	ive crite	eria and	design	constra	ints					
		·	Mapping	g of cou	rse out	comes v	vith pro	gram o	utcome	S			
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	N	Μ	N	Μ	N	N	N	М	N	S	Ν	Ν
CO2	Μ	Μ	W	Μ	N	М	N	N	N	S	Ν	Ν
CO3	W	М	N	N	N	М	N	N	Μ	S	Μ	Ν
CO4	Μ	М	М	S	N	S	М	N	Μ	S	Μ	S

14. Design of NMOS and CMOS inverters for DC signal.

15. NMOS and CMOS inverters-transient characteristics and switching times.

16. Evaluation of resistance in NMOS/CMOS.

17. Evaluation of capacitance and inductance in CMOS.

18. Design of multiplexers and demultiplexers.

19. Design of full adder and comparator.

20. Design of MOS capacitor for small signal.

21. Design and simulate common source (CS) amplifier.

22. Design and simulate cascode and active current mirrors.

23. C-V and I-V characterization of MOS capacitors.

24. Modeling and simulation of NMOS and CMOS circuits using SPICE.

PEEC-824 A														
					Core	Elective	e Lab -2							
				(M	licrowa	ve Engi	neering	; Lab)						
			L			Т			Ρ		Credi	ts		
			0			0			4		2			
		Inte	rnal Ass	sessmer	nt Mark	S					50			
		End	Semest	er Marl	ks						50			
Course	<u>e</u>	This	lab aim	is to des	sign and	d simula	ite vario	ous mici	rowave	circuits	using so	oftware		
Objectives: tool. After designing and simulation, students will be able to fabricate these														
	components/circuits.													
Course	Course 1. Design various microwave components using software tools.													
<u>Outco</u>	mes:	2. 5	Simulate	e the c	haracte	eristics	of mic	rowave	compo	nents u	using so	oftware		
		t	tools and can investigate and interpret the results.											
		3. F	abricat	e the s	imulate	ed circu	its to	provide	sustair	nable pr	oducts	in said		
		0	domain											
		1	Mappin	g of cou	irse out	tcomes	with pr	ogram	outcom	es				
										PO1				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	PO11	PO12		
CO1	М	М	М	М	S	S	S	N	М	N	Ν	W		
CO2	W	S	Ν	S	S	М	S	М	М	S	Μ	Μ		
CO3	М	Μ	S	Ν	S	S	Μ	М	М	S	Μ	S		

- 1. Design of quarter wave microstrip line on an appropriate substrate, resonated at 2.54 GHz and simulate using HFSS and plot its S_{11} and VSWR performance.
- 2. Fabrication of quarter wave microstrip line mentioned in experiment No. 1.
- 3. Design of microstrip line step transformer on an appropriate substrate at $f_o = 2.54$ GHz for impedance 50 ohms to 75 ohms, simulate using HFSS and plot its impedance plot for both ports over the span from 0.5 f_o to 1.5 f_o .
- 4. Fabrication of microstrip line step transformer mentioned in experiment No. 3.
- 5. Using HFSS, design and performance of equal split Wilkinson Power Divider for a 50 Ω system impedance at frequency $f_0 = 2.54$ GHz. Plot the return loss S_{11} , insertion loss $S_{21} = S_{31}$ and isolation $S_{23} = S_{32}$ verses frequency from 0.5 f_0 to 1.5 f_0 .
- 6. Fabrication of Wilkinson Power Divider mentioned in experiment No. 5.
- 7. Design of microstrip rectangular patch antenna resonated at $f_o = 2.54$ GHz. Simulated using HFSS and plot it S_{11} parameter and 2D radiation pattern at theta 0 degree and phi 90 degree.
- 8. Fabrication of microstrip rectangular patch antenna mentioned in experiment No. 7.
- 9. Design the microstrip line bends at 45° with matched ports at frequency 2.54 GHz. Simulate using HFSS and study the bending loss over the frequency from 0.5 f₀ to 1.5 f₀.
- 10. Fabrication of microstrip line bends mentioned in experiment No. 9.
- 11. Design the microstrip line curve bends with matched ports at frequency 2.54 GHz. Simulate using HFSS and study the bending loss over the frequency from 0.5 f_0 to 1.5 f_0 .
- 12. Fabrication of microstrip line curve bends mentioned in experiment No. 11.

PEEC-824 B														
				10	Core	Electiv	e Lab -2	<u>)</u>						
					ompute	er Alded T	Design	i Lab)	P		Credi	ts		
			0			0			4		2			
		Inte	rnal Ass	sessmer	nt Mark	S	I		-		50			
		End	Semest	er Marl	ks						50			
Course	<u>e</u>	This	lab air	ns to d	esign a	ind sim	ulate v	arious f	features	s of wir	eless n	etwork,		
<u>Objec</u>	tives:	artif	icial int	elligenc	e, micro	owave a	antenna	a, digita	I signal	proces	sing and	l image		
		processing using the different software available which can help the students												
	to work on inter-disciplinary projects.													
Course 1. Design and understand the basic of WSN using NS3 software.														
Outcomes: 2. Learn and understand the basic design procedure of neural network using														
		F	ython	program	nming.									
		3. 5	Simulate	e and a	nalyze ⁻	the cha	racteris	stics of	differer	nt types	of mic	rowave		
		6	antenna	using s	oftware	2.								
		4. l	Jnderst	and th	e appl	ication	of M	ATLAB	in digi	ital sigr	hal and	image		
		r	processi	ng.					0	0		0		
		r												
		1	Mappin	g of cou	irse out	comes	with pr	ogram	outcom	es				
										PO1				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	0	PO11	PO12		
CO1	Μ	Μ	Μ	Μ	S	S	S	N	Μ	N	N	W		
CO2	W	S	N	S	S	Μ	S	Μ	Μ	S	Μ	Μ		
CO3	Μ	Μ	S	N	S	S	Μ	Μ	Μ	S	Μ	S		

Μ

Μ

S

Ν

CO4

1. To understand the basic concepts about the wireless sensor network (WSNs), types and application.

S

Μ

Μ

Μ

S

Μ

S

2. To design and simulate a wireless sensor network (WSN) using NS3 simulator.

S

- 3. To study and design WSN using LEACH, a cluster-based routing protocol for WSN.
- 4. To understand and write a PYTHON programme to wrap inputs of neural network with NumPy.
- 5. To understand and write a PYTHON programme to make the prediction in neural network.
- 6. To understand and write a PYTHON programme to train a Neural Network.
- 7. To understand and write a PYTHON programme to minimize the errors.
- 8. To study and understand the Digital signal Processing using MATLAB.
- 9. To study and understand the Image Processing using MATLAB.
- 10. To design and simulate E-plane, H-plane, and Magic Tee for operation in X-band frequency range using HFSS software.
- 11. To Design and simulate Horn Antenna for operation in X-band frequency range using HFSS.
- 12. To Design and simulate rectangular and circular patch microstrip antenna for 5G application using ADS/ HFSS software.
- 13. To Design and simulate wire monopole antenna for 5G application using ADS/ HFSS software.
- 14. To Design and simulate triple-frequency microstrip-fed monopole antenna using defected ground structure using ADS/ HFSS software.

	PCEC-824													
						Semina	r							
				L		Т			Ρ		Credi	ts		
				0		0			2		1			
<u>Course</u>	e Object	ives:	To car	ry out a	preser	ntation i	n one c	of the sp	pecializa	itions o	f the pr	ogram		
			with su	ubstanti	al multi	disciplir	nary con	nponent	t.					
Course	<u>e</u>		1. An	ability ⁻	to write	e techni	ical doc	uments	and give	ve oral	present	ations		
<u>Outco</u>	mes:		rela	ated to	o the	work	comp	leted	and in	nproves	, perso	onality		
			dev	velopme	ent and	commu	nication	n skills.						
			2. Tra	in the	studer	nts to	approa	ich eth	ically a	any mu	ultidiscip	olinary		
			eng	gineerin	g chall	enges v	with ec	onomic	, enviro	onment	al and	social		
			cor	ntexts a	and to	set th	em foi	r future	e recru	itment	by po	tential		
			em	employers.										
			3. Ide	ntify an	d apply	approp	oriate w	ell-rehe	arsed n	ote-taki	ing inte	ractive		
			and	d time m	nanager	nent str	ategies	to their	acaden	nic stud	ies.			
			4. Dev	velop	audien	ice-cent	red p	oresenta	ations	meetir	ng co	ncrete		
			professional objectives and integrating ethical and legal visual aids.											
			5. Identify and critically evaluate the quality of claims, explanation,											
			sup	port, a	nd del	ivery in	n publi	c and	professi	ional d	iscourse	e, and		
			understand the factors influencing a speaker's credibility.											
		1	Mappin	g of cou	rse out	comes v	vith pro	ogram o	utcome	S				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12		
CO1	Ν	Ν	Ν	S	N	Ν	N	S	М	S	S	S		
CO2	Ν	Ν	Ν	Ν	N	N	N	S	N	Ν	Μ	Ν		
CO3	Ν	Ν	Ν	Ν	N	N	N	S	М	Ν	W	Μ		
CO4	N	Ν	Ν	S	N	N	N	S	М	S	S	S		
CO5	Ν	Ν	Ν	S	N	N	N	S	Μ	S	Μ	М		

PEEC-911A Wireless Sensor Networks													
				V	ireless s	ensor	T		D		Credits		
		-		3			0	()		3		
		-	Session	al Mark	S		-		-		50		
			End Sen	nester E	xamina	tion M	arks				50		
Course	e Object	tives:	This co	urse is	aimed t	o stuc	ly the s	ate- of	- the-	art w	ireless s	sensor	
			networl	<pre>c archite</pre>	ecture, r	outing	protoco	ols, perf	orman	ce metri	cs, chal	lenges	
			as well a	as the a	pplicatic	ons of v	vireless	sensor i	networ	ks.			
Course	e Outco	mes:	1. Und	erstand	the p	rinciple	es and	charact	teristics	s of wi	reless s	sensor	
			netv	vorks.			uzo tho	nrohlor	ne roloi	tod to w	iroloco	oncor	
			Z. Ider	niny, eva vork	iluate al		lyze the	probler	lis reia	led to w	ireless s	ensor	
			3 Und	erstand	the diff	erent c	lusterin	g algorit	thms ai	nd their i	usefulne	255	
			4. Desi	ign diffe	rent pro	tocols	to solve	the exi	sting is	sues.	ascrank	200.	
		1	Mapping	g of cou	rse outc	omes v	with pro	gram o	utcome	es			
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	S	Ν	N	Μ	Ν	Μ	Ν	Μ	N	N	Ν	N	
CO2	N	S	М	Ν	Ν	Μ	Ν	N	Μ	Ν	Μ	М	
CO3	S	Μ	Μ	S	Μ	Μ	Μ	N	Ν	N	Μ	N	
CO4	S	Μ	Μ	N	Μ	Μ	S	N	Μ	N	Μ	Μ	
		0		Uni	<u>it-l</u>							10 hrs	
Introd	Introduction: Characteristic requirements for WSN, challenges for WSNs, comparison with ad-												
noc w	ireless n	letwork	s, single	node a	rcnitecti	ures –	narawai	re comp	onents	, energy		nption	
BT-no	des Tel	ns-B	Innercia	ily avali	able sell		ues – i	mote, i	лз, III		e, etes	noues,	
DT HO				Uni	t-II							16 hrs	
Mediu	ım acce	ss cont	rol prot	ocols: F	undame	entals o	of MAC	protoco	ols - loc	ation dis	covery,	other	
issues	- low du	uty cycl	e and wa	ake up o	oncepts	, IEEE	802.15.4	1 MAC p	protoco	ls, energ	gy efficie	ency.	
				<u>Unit</u>	t-111							10 hrs	
Routir	ng and o	lata ga	thering	protoco	ls: Rout	ing cha	allenges	and des	sign iss	ues in w	ireless s	sensor	
netwo	rks, flo	oding a	and goss	siping, d	data cer	ntric ro	outing, g	gradient	based	routing	, hierar	rchical	
routin	g, locati	on-base	ed routi	ng, data	aggrega	ition o	peration	is, aggre	egation	techniqu	Jes		
A		-6 14/6		Unit	<u>t-IV</u>				alta a se			12 hrs	
Applic	ations	or ws	N: VVSI	appilo Sations	cations	- nom	e contr	OI, DUII	aing a	utomati	on, ind monit	ustrial	
militar	iation, wan	lication	n applic	il and	envir	onmer	ntal e	ngineeri	ing a	nnlicatio	nc w	uldfire	
instru	y app mentatio	on, hab	itat mor	nitoring	etc.	onner		ignicer	ing a	ppileatio	, vi	nume	
in ocr ai				R	ECOM	NENDE	D BOO	KS					
	Title						Author			Publi	isher		
1. Wir	eless Se	nsor Ne	etworks	Techno	logy,	Kaze	em Sohra	aby, Dar	niel Jol	nn Wiley	& Sons	, 2007	
Prot	cocols ar	nd Appl	ications			Min	oli and ٦	Taieb Zn	ati				
2. Pro	tocols a	nd Arcl	nitecture	es for W	ireless	Holg	ger Karl a	and	Jol	nn Wiley	& Sons	Ltd,	
Sens	sor Netv	vorks				And	reas Wil	lig	20	05			
3. Wir	eless Se	nsor Ne	etworks:			D. K	umar, T.	C Aseri,	La	o Lambe	rt Acade	emic	
Hete	erogene	ous Clu	istered D	Data Agg	gregation	ו and	R.B. Pat	el	Pu	blishing	GmbH 8	ሏ Co.,	
and	Routing	g Protoc	cols						Ge	rmany, 2	2012		

	PEEC-911B Network Security and Cryptography												
				L		Т		0	Р		Crea	dits	
			:	3		0			0		3		
		Sessi	onal Ma	arks							50	0	
		End S	Semeste	er Exami	natior	n Marks					50	0	
Course	<u>-</u>	The a	aim of t	his cour	se is t	o identif	y and u	tilize di	fferent	forms o	f crypto	graphy	
Object	aves:	techr	niques, I	incorpor	ate au	ithentica foront tu	tion and	securi	ty in th	ie netwo	rk appli	cations	
		same	uistiligu s		ng un	lerent ty	pes or t	meats	to the	system a		ule the	
Course	9	1. Ur	nderstar	nd the ne	ed of	network	and sys	tem sec	urity.				
Outco	mes:	2. Un	derstan	d the ba	sics of	f private l	, key and	public k	key cryj	otograph	у.		
		3. Fai	miliarize	with the	e conc	cept of nu	ımber tl	neory.					
		4. Un	derstan	d the va	riousa	authentic	ation te	chnique	es in se	curity.			
	DO1		Vlapping	g of Coul	rse Ou	itcomes v	with Pro	ogram C	utcom	es DO10	DO11	DO12	
<u> </u>	P 01	M	P03	P04	PU5 N	PU6	P07	PU8 N	P09	POID	N	PO12	
CO2	M	M	M	N	N	N	N	N	N	N	W	N	
CO3	W	S	W	N	N	N	N	N	N	N	W	N	
CO4	S	S	М	N	Ν	N	N	N	N	N	N	N	
					<u>Uni</u>	i <u>t-l</u>					12	hrs	
Security: Need, security services, attacks, OSI security architecture, one-time passwords, model													
for network security, classical encryption techniques like substitution ciphers, transposition													
System	s, crypta	analysis ty: Intri	of classi	cal encry	yption dotoc	tion nas	les.	aanagor	nont v	vorme vi	irusos t	roians	
virus c	virus countermeasures, firewalls, firewall design principles. trusted systems.												
Virus e	<u>Unit-II</u> 10hrs												
Number theory: Introduction, Fermat's and Euler's theorem, the Chinese remainder theorem,													
Euclide	ean algo	orithm, e	extende	d Euclide	ean alg	gorithm a	nd mod	ular ari	thmetio	c.	[
			• • •		Unit-I	<u>II</u>				64	14	hrs	
Private	e-key (s	ymmeti undard (DES) ac	otograph Ivanced	ancry	ntion sta	rs, strea ndard ()	am cipr AFS) tri	nle DE	C4 Stream	n cipne	r, uata	
differe	ential crv	/ptanalv	vsis.	vanceu	enery		nuaru (/	τ ι 5 <i>)</i> , τη	pie DL	5, RC5, I	DLA,inte		
Public	-key (as	symmet	ric) cry	otograph	ny: RS	SA, key d	istributi	on and	mana	gement,	Diffie-H	lellman	
key ex	change,	elliptic	curve ci	ryptogra	phy, n	nessage a	uthenti	cat ion (code, h	ash func	tions, m	essage	
digest	algorith	ms: MD	94 MD5,	secure H	lash a	lgorithm	RIPEM	D-160, I	HMAC		-		
		10			Unit-l	<u>V</u>					12 hrs	• • • • • • •	
Authe	nticatio	n - IP ar	id web s	security (digitai	signatur	es, aigiti sulating	ai signat	ture sta ty payl	andards, a	authent	amont	
web se	ecurity	conside	rations	secure s	socket	laver an	d trans	nort lav	iy payn Ver seci	urity sec	ure elec	ctronic	
transa	ction.	conside		Secure	boonet	a layer ar		pore la,					
				R	ECON	MENDE	D BOO	KS					
		Titl	е			Autl	nor		Publ	isher			
1. Cry Prin	ptograp ciples a	hy and nd Pract	Netwo tices	ork Secu	ırity,	William	Stalling	5	P	earson Eo	ducatior	1	
2.NetworkSecurity,PrivateCharlie Kaufman, RadiaPrentice HallCommunication in a Public WorldPerlman and Mike Speciner													
3. Security Architecture, Design Christopher M. King, Ertem RSA Press													
De	ployme	nt and C)peratio	ns		Osmano	glu, Cur	tis Dalto	on,				
4. Insi	de Netv	vork Per	imeter	Security		Stephen	Northcu	utt, Leny	/ P	earson Eo	ducatior	<u></u> ו	
						Zeltser, S	Scott Wi	nters, Ka	aren				
						Kent, an	d Ronald	d W. Rito	chey				

	PEEC-911C Advanced Computer Networks												
		[ivanced			tworks	D		Crodi	te	
		F		3			0	-	<u>г</u> 0		3	15	
		F	Sessiona	al Mark	s		•		•		50		
		-	End Ser	nester E	xamina	ation M	larks				50		
Cours	е		The aim	of this	course	is to pr	ovide a	broad	covera	ge of sor	ne new a	advanced	
Objec	tives:		topics i	n the	field o	of com	puter	networ	·ks (wi	reless r	etworks	, mobile	
			network	s, VPN	netwoi	rks, etc	.) and to	o give t	he stuc	lent idea	as and ir	sights on	
			importa	nt desig	gn issue	s assoc	iated w	ith com	nputer i	network	s.		
<u>Cours</u>	e		1. Und	erstand	the	main	abstrac	t cond	epts i	related	to the	layered	
Outco	mes:		com	munica	tion arc	chitectu	ire.						
			2. Anal	yze an	d impl	ement	some	of the	e most	advan	ced rou	ting and	
			cong	estion	control	algorit	hm.	<i>c</i>				/.1	
			3. Evalu	late 1	the p	erform	ances	Of C	ompute	er net	works	(through	
			Manni			eiing ar							
	DO1	PO2								Diffes	PO11	PO12	
CO1	M	PO2 N	- F03 W	N N	M	W	N N	N N	N N	N	W	N N	
CO2	M	S	M	N	N	M	M	N	M	N	M	M	
CO3	N	N	N	S	M	N	M	N	N	N	M	N	
<u>Unit-I</u> 12 hrs													
Introc of TCI access	Introduction to computer networks: Reference models: OSI model, TCP/IP model, comparison of TCP/IP and OSI models, types of data transmission, error detection and correction, multiple												
	-			Ur	nit-II							12 hrs	
Netwo	ork typ	es an	d topolo	gies: L	ANs, W	/ANs, c	others a	nd hyb	orids, et	hernet,	token b	us, token	
ring; s	star, rin	g, bu	s, other.	networ	k hard	ware : v	wiring,	networ	k inter	face car	ds, hubs	, routers,	
switch	nes, intr	oduct	ion to N	ovell Ne	etWare	, and A	RPANE	T.					
				<u>Un</u>	it-III							12hrs	
Introd	luction	to dis	tributed	system	ns: Chai	racteris	tics of c	listribu	ted Sys	tems, ex	amples,	resource	
sharin	g, syst	em r	nodels,	archite	ctural	fundam	nentals:	basic	conce	pts, clie	nt-serve	r model,	
coope	ration I	betwe	en clien	t and s	ervers,	extens	ion to t	he clie	nt serv	er mode	el: mobil	e agents,	
proxy	servers	•			•• •• •							(0	
Nature				<u>Un</u>	It-IV							12nrs	
Netwo	orking a			orking		ork typ	es, prin	icipies,	IP dell	very rev	new, op	tions and	
server	comm	unica	ion grou	in com	munica	tion	nunicati	UII. EXI	ernaru	atarepi	esentati	on, chent	
501701	comm	unicu	.1011, 5100		RECO	MMEN		OOKS					
Title Author Publisher													
1. C	1. Computer Networks Andrew S. 2nd edition, PHI, 1988												
	•					Tan	enbaun	n			. ,		
2. C	ompute	er ne	twork a	nd Dis	tribute	d Jam	ies Mar	tin	Pr	entice-H	Iall.		
р	rocessir	ng											
3. D	ata Con	nmun	ications	and		B.A	. Forouz	an	4t	h editior	n, McGra	aw Hill	
N	etwork	ing							Ec	lucation	2006		

OEEC911A												
	Liectronic Product Design											
3							0		0		3	
Sessional Marks									50			
End Semester Examination Marks 50									50			
Course	Course The objective of this course is to provide adequate knowledge about the										ut the	
Object	<u>-</u> tives:	re	iability,	contro	l panel	desig	n, ther	mal co	onsid er	ation a	nd pac	kaging
	required for electronic industry.										0 0	
Course 1. Explain reliability and methods of solving complex problems.												
<u>Outco</u>	mes:	2	. Explai	n the im	portanc	ce of Ae	esthetics	s and Er	gonom	ics in ele	ctronics	5
			produ	ct desig	n.							
		3	. Explai	n need o	of contr	ol pane	l design	and th	ermal c	onsidera	ation in	
			electr	onic ind	ustry.			<i>c</i>				
		4	. Explai	n the ty	pes of ir	nter-co	nection	n for pa	ckaging	<u>.</u>		
		ו בחם									DO11	DO12
CO1	W	N N	N N	N N	N	M	N N	M	N	N	N	N
CO2	M	M	S	M	N	S	M	N	N	N	M	M
CO3	M	M	S	S	N	S	M	N	S	N	S	M
CO4	N	Μ	M	N	N	Μ	N	N	M	N	M	N
Unit-I 11hrs												
System reliability concepts: Introduction to concepts of reliability, nature of reliability												
proble	ems in	electro	onics e	quipmei	nt, seri	es cor	figuratio	ons, pa	arallel	configur	ation,	mixed
config	uration,	metho	ods of s	olving c	omplex	system	ns, mea	n time	to fail	ure (MT	TF) and	l mean
time	betwee	n failu	ire (M	ГВ) of	system	s. mai	ntainab	ility, a	vailabili	ty conc	epts, s	system
downt	ime, m	ean tim	e to rep	bair (M1	ΓTR), fau	ılt tree	analysis	s-conce	pts and	proced	ures, ru	les for
fault ti	ree cons	structio	n.							1		
-				<u>Uni</u>	<u>it-II</u>							12hrs
Ergono	omics a	ind aes	sthetics	in elec	tronics	produc	t desig	n: Ove	rview	of electr	onics p	roduct
design	i, top-a	own an		m-up a	pproacn	, consi d aasth	dering p	ower s	supply	design a	s an ex	ampie,
ergond	JIIICS al	iu uisp	ay w.r.t.	Lini		u aesti		IISIUEIa	. 1011			12 hrs
Contro	n nanel	design	and th	ermal c	onsider:	ation	vnes of	contro	ls desi	n and o	rganiza	tion of
contro	ol panel	engine	ering c	onsider	ation. la		f compo	onents.	selecti	on of ma	aterials.	sheet
metals	s and pla	astic. st	ructura	design	and cor	ntrol ca	binets fa	abricati	ons. th	ermal m	anagem	ient of
electro	onics ec	, quipme	nt, ther	mal des	sign con	siderat	tion, co	mponei	nt leve	l, board	level, s	system
level, f	fans and	l systen	n operat	ing chai	racterist	ics, hea	at sink d	esign.				
				<u>Uni</u>	<u>t-IV</u>							10 hrs
Packag	ging: D	esign (consider	ation f	or inter	-conne	ections,	types	of inte	er-conne	ctions,	wires,
cables	, conne	ctors, ti	reatmen	t of vibr	ration, g	roundi	ng.	KC				
		Titlo		F	ECOIVII		D BOO	KS	Du	blishor		
1 Ma	terials a	nd Pro	resses ir	<u>ו</u>		Frne	st Paul I	De	12	th Edition	lohn \	Vilev
Ma	nufactu	ring	CC33C3 II			Garr	no. IT F	Black	8	Sons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	viicy
1410		ъ				Ronz	ald A. Ko	bhser				
2. Adva	anced Th	nermal o	of Electro	onics Ea	uipment	Raip	h Remst	ourg	g	ringer, 20)11	
3. Prod	duct De	sign of	Electron	ics Eaui	pment	V.S.	Bagad	0	4 th	Edition	2009.	
		0							Те	chnical P	ublicati	on
L						1						

OEEC-911B													
Soft Computing													
		-	C !	3	_		0		0	3			
		-	Session		.S						50		
Course		-	End Ser	nester E			arks	o o to of	Coff of		50 ~ The		
Course		ives:	will ctu	irse aim dy bow	to app	arn the	key asp	nd road	SOIL CO	omputin to bond	lg. The	course	
			and so	uy now	in app	a nroh	lome u	ndorsta	and the	to Hallu	ie uncer	noural	
			networl	k and it	ts annli	cations [.]	know :	about t	he com	nonente	s and h	uilding	
			block h	vnothes	sis of G	enetic	algorith	m. Nex	t focus	to gair	n insigh	t onto	
			neuro f	uzzv mo	odeling	& conti	rol and	gain kn	owledg	e in ma	chine le	arning	
			through	Suppor	rt vector	r machi	nes.	8	0	-			
Course	e Outco	mes:	1. Ana	lyze the	genetic	algorit	hms and	d their a	applicat	ions			
			2. Gair	n knowl	ledge to	o deve	lop gen	etic alg	gorithm	and s	upport	vector	
			mac	hine-ba	sed ma	chine le	arning s	system.					
			3. Writ	te genet	tic algor	ithm to	solve th	ne optin	nization	n probler	n.		
			4. Ana	lyze vari	ious nei	ural net	work ar	chitectu	ires.				
			5. Und	lerstand	fuzzy	concep	ts and	develo	p a fuz	zzy expe	ert syst	em to	
			deri	ve decis	sions.		<i>c</i>		<i>c</i>				
			6. Able	e to n	nodel	neuro	fuzzy	system	for	data cl	ustering	s and	
classification.													
	Mapping of course outcomes with program outcomes											DO12	
<u> </u>	P01 6	PUZ	P03	P04	P05	PU6 M	P07	PU8 M	P09	P010	POII	POIZ	
CO1	S	M		N	M	M	S S	N	N	N			
CO2	N	M	N	N	N	M	M	N	N	S	M	M	
CO4	N	M	N	N	N	W	N	M	M	N	M	W	
CO5	S	N	S	N	N	S	S	N	N	N	M	M	
CO6	S	N	W	N	S	W	M	Ν	N	N	N	N	
	1		1	Uni	it-l	I	1		1		1	12 hrs	
Neura	l netwo	ork fun	dament	als: Basi	ic conce	epts, hi	uman bi	rain, ar	tificial r	neuron i	model,	neural	
netwo	rk arch	itecture	es -Roser	nblatt's	percept	ron, A	DALINE	and I	MADAL	INE net	works,	neural	
netwo	rk char	acterist	ics, lear	ning me	ethods,	archite	cture ta	xonomy	y, back	-propaga	ation ne	etwork	
(BPN)	, BPN a	rchitect	ure, per	ceptron	model,	, single	layer ne	twork,	multila	yer perc	eptron	model,	
back-p	propaga	tion le	arning,	back-p	oropaga	tion al	gorithm	i, tunii	ng par	ameters	s effect	c and	
param	eter sel	ection,	applicat	ion of A	NN to c	channel	equaliz	ation.		1			
		I		Uni	<u>t-II</u>			. I I	. C	 		12 hrs	
Fuzzy	logic i	rundam		Crisp so	ets, tuz	zzy set	s, men	ibership	o tunci	non, ba	SIC TUZ	zy set	
operat	tions, in	JZZY SE fuzzv r	alations	fuzzy c	customs	crico l	Tuzzy		logic	y Carte	sian pr		
based	system	and de	fuzzifica	, iuzzy s tion me	thods	, crisp i	logic, pi	euicate	iugic,		gic, Tuzz	.y rule	
based system and defuzzification methods.													
Genet	ic algo	ithm f	undame	ntale: 1	Rasic co	ncente	hiolog	ical ha	rkorour	l Id Worl	ing nri	ncinle	
encod	ing. fit	ness f	unction	reproc	duction	incluc	ing roi	ulette -v	wheel	selection	n. Bolt	zmann	
selecti	selection, tournament selection, rank selection and steady state selection, design of ranid												
nickel	nickel cadmium battery charger and rule base generation from numerical data using GA.												

Unit-IV:12 hrsGenetic modeling: Inheritance operators, cross-over-single site crossover, two-point crossover,
multipoint crossover, uniform crossover, matrix crossover, crossover rate, inversion, deletion
and duplication, mutation operator, generation cycle, convergence of genetic algorithms.

	RECOMMENDED BOOKS											
	Title	Author	Publisher									
1.	Neural Networks, Fuzzy Logic and	S. Rajasekaran and G.A.	PHI									
	Genetic Algorithms	Vijayalakshmi Pai										
2.	Artificial Neural Networks	B. Yegnarayana	PHI									
3.	Introduction to Applied Fuzzy	Ahmad M. Ibrahim	PHI									
	Electronics											
4.	Fuzzy Logic with Engineering	J T Ross	McGraw-Hill									
	Applications											

	OEEC-911C											
						nunica	tion sys	I)		Crodits	
		_							3			
			Sessiona	Marks			•		,		50	
		-	End Sem	ester Ex	aminati	on Mai	·ks				50	
Course	9	•	The aim	of this	course	is to	train stu	udents	in met	hods of	analys	is and
Object	tives:		nstallatio	on of	optical	fiber	based	commu	nicatior	ns syste	ems; sy	/stems
			olanning	using d	ifferent	photor	nic techr	nologies	s as wel	l as adv	vanced o	optical
		:	signal pr	ocessin	g mode	ls. Furt	her, foo	cuses o	n differ	ent noi	nlinearit	ties in
			optical fi	ber and	l their r	nitigati	on in m	nodern	optical	fiber co	ommuni	ication
			system;	design	and eva	aluatior	n of mo	odern o	optical	fiber co	ommuni	cation
6	_		systems.		-l +l l				<u>(' </u>			
Outco	<u>e</u> moc:		1. 10 ur	nderstar	ad the ba	asic cor	icept of	optical	nber co nlinoari	mmunic	cation sy	/stem.
	mes.		2. TO u	nunicati	on syste	various sm	uispeis		IIIIIeaii	ties en		Jptic ai
			3. Abilit	v to des	ign high	bit-rat	e fiber c	optic co	nmunic	ation sv	vstems.	
			4. Abilit	y to	analyze	e, mo	del an	id imp	lement	, adva	nced o	optical
			comr	nunicati	on syste	ems.						
	5. Capable to use optical communications simulation tools to assess the											
			resul	ts obtaiı	ned fron	n theor	etical st	udies.				
			Mappin	g of cou	rse outo	comes v	with pro	gram o	utcome	S		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	IVI	W	N	N S	N	W	N N	N	W	N N	N	N
CO2				S N	IN N	۱۷ د						
CO4	N/	S	S IVI	N	M	<u> </u>	M	N	N	N		M
CO5	N	N	M	S	M	 M	M	N	N	N	N	N
				Un	it-l							16 hrs
Overv	iew of	optica	l fiber co	ommun	ication:	Evolut	ion of	basic	fiber c	ptic co	ommuni	cation
system	n, bene	fits a	nd disad	lvantage	es of fi	ber op	tics, tra	nsmissi	on wind	dows, tr	ansmiss	ion of
light t	hrough	optic	al fiber,	nu merio	cal aper	ture (NA), op	otical fil	per mo	des & c	onfigur	ations,
types	of fiber,	wave	propaga	tion in s	step ind	ex & gr	aded in	dex fibe	er, MFD	, propa	gation n	nodes
in step	o index	fibers	attenua	ition in	optical	fibers,	fiber op	otic loss	calcula	itions, b	ending	loses,
absorp	otion, s	catter	ing, fibe	r dispe	ersion,	disper	sion s	shifted	fiber,	D -flat	tened	fiber,
polariz	zation, c		CONDITIO	n and V	-parame	eter, cor	inectors	s & splic	es.	la fibar	atton	uation
and o	disnersia	n lir	nits in	fihers	disners	ion m	anagem	ent K	err nor	nlinearit	v self.	-nhase
modul	ation. c	ross p	nase moo	dulation	. FWM.		unugenn			micunt	<i>y,</i> 5cm	phase
	,.			Un	, it-II							12 hrs
Optica	l sourc	es: Di	ect and	indirect	band g	gap ma	terials, s	semicor	ductor	light-er	nitting	diodes
and la	ser dio	des, L	ED powe	r & effi	ciency, d	double	hetero -	junctio	n LED,	planner	& dom	ie LED,
surfac	e-emitti	ng LE	Ds, edg	e-emitti	ng LED	s, supe	er lumir	nescent	LED, d	characte	eristic c	of LED,
modul	ation, la	aser di	odes: ba	sic conc	epts for	emissi	on of ra	diation,	thresho	old cond	lition fo	r laser
oscilla	oscillation, quantum well laser, distributed feedback laser, laser characteristics.											

Optical detectors: Principles of photodiode	s, PIN & avalanche ph	otodi	odes, photodetector								
noise, detector response time, avalanche multiplication noise, temperature effect on avalanche											
gain, receiver SNR and BER calculations.											
<u>Unit-III</u> 10 I											
Optical amplifiers: Semiconductor amplifiers, Eerbium-doped fiber amplifiers (EDFAs) and											
Raman amplifiers, analytical modeling of gain saturation, gain equalization, ASE noise, amplifier											
cascades.											
Optical sensors: Advantages, generic optical f	fiber sensor, fiber selecti	on foi	r sensor, wavelength								
modulated sensors - pH, humidity, tempera	ture, carbon dioxide se	nsors	, fiber Bragg grating								
based sensors - principle, strain, pressure sensors, chemical sensors.											
<u>Unit-IV</u>			10 hrs								
Optical networks design: Fiber optic system design considerations -power budget, bandwidth											
and rise time budgets, electrical and optical b	andwidth etc.										
Advanced multiplexing strategies: Optical	TDM, subscriber multip	olexin	g (SCM), WDM and								
hybrid multiplexing methods, optical network	working - optical netw	ork 1	topologies, network								
architecture- SONET/TDH, optical burst sv	witching, OADM, wave	length	n conversion, optical								
filters, MZI.											
RECOMM	IENDED BOOKS										
Title	Author		Publisher								
1. Fiber-optic communication Systems	G. P. Aggarwal	2nd I	Ed., J. Wiley & Sons,								
		1997									
2. Optic Communication Systems	Mynbaev	Pears	son education, 2001								
3. Optical Fiber Communication	Gerd Keiser	5th e	dition, McGraw Hill,								
		2013									
4. Optical Fiber Communication J. Senior PHI											

	PCEC-911											
Dissertation (Part-I)												
			L			Т		Р			Credits	
				0		0		20			10	
Course	e Object	ives:	The aim of the course is that students learn the process of research									
			propos	al writi	ing, cor	nducting	g resear	ch in E	lectroni	cs & Co	ommuni	cation
			Engine	ering. S	tudents	ar	e expec	ted to	wor	'k on	form	ulation
			research problem, and literature survey. By the end of the semester, they									
			are exp	pected t	o comp	lete and	d preser	nt their i	research	n propos	sals.	
Course	<u>e</u>		1. Review of literature as pertains to their dissertation topic.									
<u>Outco</u>	mes:		2. Design a conceptual framework, research design and data analysis									
			plan as they pertain to their dissertation topic.									
			3. Have abilities and capabilities in developing and applying computer									
			sof	tware a	nd hard	ware to	electro	nic desi	ign.			
		I	Mapping	g of cou	rse out	comes v	vith pro	gram o	utcome	s		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	М	М	W	S	М	М	N	N	М	М	М	N
CO2	Ν	N	Ν	S	N	N	N	S	S	S	М	S
CO3	N	N	Μ	S	S	Μ	М	N	N	N	М	М

	PCEC-921												
Dissertation (Part-II)													
			L			Т			Р		Credits		
				0		0			32		16		
Cours	e Object	ives:	The air	n of the	course	is that	the stuc	lent will	work o	n their i	research	ו topic	
			in con	sultatio	n with t	the sup	ervisor.	Studen	ts will o	conduct	experir	nental	
			and/or analytical study and analyzing results with modern mathematical										
			/ scien	itific me	ethods a	and use	of soft	ware to	ools on	their re	esearch	topic.	
			The n	ext foc	us is o	n prepa	aring th	ne stude	ents fo	r their	researc	h and	
			dissert	ation w	riting. I	By the	end of	the sen	nester, t	hey are	e expec	ted to	
	complete and present their research dissertation.												
Course	<u>e</u>		1. Apply/develop solutions or to do research in the areas of Electronics										
<u>Outco</u>	mes:		& Communication Engineering.										
			2. Design and validate technological solutions to defined problems.										
			3. Organize, analysis and interpret experimental results.										
			4. Describe the significance of experimental outcomes in a well-										
			reasoned discussion.										
			5. Communicate clearly and effectively for the practical application of										
			their work.										
			6. Defend the experimental approach, methods, and interpretation in an										
			ora	l defend	e befor	e the ev	/aluatio	n comm	ittee.				
			Mappin	g of cou	rse out	comes v	vith pro	gram o	utcome	S			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	
CO1	S	S	S	S	S	S	S	Μ	S	Μ	S	Μ	
CO2	S	S	S	W	Μ	S	S	W	Μ	Ν	Μ	Μ	
CO3	Μ	S	Μ	S	W	Μ	Μ	Μ	Μ	S	Μ	Μ	
CO4	N	Ν	N	S	N	N	N	S	S	S	S	S	
CO5	N	Ν	Ν	S	N	N	N	S	Μ	S	S	S	
CO6	N	N	N	S	N	N	N	S	Μ	S	S	S	