

		Semester-	III									
S.No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1.	MDEC- 521	Digital Circuits and Logic Design	3	1	0	4	4					
		Total	3	1	0	4	4					
Semester-IV												
S.No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1.	MDEC- 611	Microcontroller	3	0	2	4	4					
	·	Total	3	0	2	4	4					
	Semester-V											
S.No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1.	MDEC- 621	Communication System	3	1	0	4	4					
		Total	3	1	0	4	4					
		Semester-	VI	•								
S.No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1.	MDEC- 711	Fiber Optics	3	0	2	4	4					
		Total	3	0	2	4	4					
		Semester-	VII	•								
S.No.	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1.	MDEC- 721	Signal Processing	3	1	0	4	4					
		Total	3	1	0	4	4					

MINOR DEGREE

MDEC-511														
			T		Digita	Circu	its and	Logic	Design	D			7	
			1	 2			 1			<u> </u>		•		
		Sessic	nal M	, arks			1			U			50	
		End S	Semeste	er Exai	ninatio	on Mar	ks						50	
Cours	se	The n	nain ob	jective	of this	course	to acqu	uire kno	owledge	e and b	ecome	familia	r with o	ligital
<u>Objec</u>	tives	circui	ts and l	ogic de	esign. T	The stuc	lents w	ill be a	ble to i	implem	ent var	ious fu	nctions	using
		combi	nationa	and and	seque	ntial c	ircuits.	It en	ables	student	s to c	lesign	and ar	nalyze
		synch	ronous	and a	asynchr	onous	finite	state 1	machin	es. Th	e cour	se also	deals	with
		progra	ammabl	le logic	$\frac{1}{2}$ device	es such	as PR	OM, P	LA, PA	AL, FP	GA, etc	c. Furth	er, har	dware
Cours	se	1 De	sion ar	inguage	sis of y	various	logic fi	unction	s iisino	differe	nt com	bination	al circi	iits
Outco	omes	2. At	ole to d	lesign	and im	plemen	t simp	le and	comple	ex sync	hronou	s and a	synchr	onous
		S	equenti	al syste	ms usii	ng state	machi	nes.	1	2			5	
		3. Ar	3. An ability to analyze and implement different functions using programmable logic											
		d	devices.											
		4. Able to design and implement the digital system using a hardware description language.												
			wia	oping o		se Out	comes	with P	rogran		PO1	PO1	PSO	PSO
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2
CO	3	3	3	3	1	2	0	1	1	0	0	2	3	2
1	•	•	•	•	-	_	Ŭ	-	-	Ŭ	Ŭ	_	•	-
CO	3	3	3	3	2	2	0	1	1	0	1	2	3	2
2														
CO	3	3	2	2	2	2	0	1	2	0	1	2	3	2
$\frac{3}{CO}$	3	3	3	2	3	2	0	1	1	0	0	2	3	2
4	3	5	5	2	5	2	U	I	I	U	U	2	3	4
-						Unit-I							10 hrs	5
Intro	duction	n to Di	gital D	esign:	Review	v of dig	gital de	sign fu	ndame	ntals, d	esign,	and mir	nimizati	ion of
combi	nationa	al circui	its and	their in	nplemei	ntation	using n	nultiple	exers, de	ecoders	, PRON	M, PLA	, PAL,	etc.
						Unit-Il	[14 hrs	5
Finite	State	Mach	ines: S	Sequent	ial ma	chine f	fundam	entals,	state c	liagran	n, analy	sis of	synchr	onous
circuit	ts, state	graphs	and ta	bles, re	ductior	n of stat	e table	s, state	assignr	nent, d	esign o	f sequer	nce dete	ectors,
conce	pt of ov	verlapp	ing in s	sequence	e detec	ctors, M	loore a	nd Mea	aly state	e machi	ines, de	sign of	synchr	onous
seque	ntial sta	ate mac	hine, d	esign o	f count	ers and	shift r	egisters	s, introc	luction	of asyn	nchrono	us sequ	ential
state r	nachine	es.											[
					1	Unit-II	I						12 hrs	5
Progr	amma	ble Lo	gic De	evices:	Introd	uction	to pro	gramma	able lo	gic de	vices, 1	types o	f PLD	's, its
applic	ations,	implen	nentatio	on of di	gital lo	gic usir	ng PRO	M, PA	L, PLA	, CPLE	O's and	FPGA's	5.	
					_	Unit-IV	/						12 hrs	5

Hardware Description Language: Introduction to HDL and its types, Overview of digital system design with VHDL, basic language terminology, VHDL representation of digital design entity and architectural declarations, basic language elements, introduction to behavioural, dataflow and structural models, model simulation and test bench, applications of VHDL to design.

RECOM	RECOMMENDED BOOKS											
Title	Author	Publisher										
1. An Engineering Approach to Digital Design	William I Fletcher	Pearson Education										
2. Digital Design	M. Morris Mano R.	Pearson Education										
3. Digital System Design using VHDL	Charles H. Roth Jr.	Cengage Learning										
1. A VHDL Primer	J. Bhaskar	Pearson Education										
2. Circuit Design using VHDL	V. A. Pedroni	MIT Press										

MDEC-521 Microcontrollon														
				т		IVII	Crocol T	itrolle		р			Crodit	2
				3			1			0			<u></u>	3
			Session	al Ma	rks		-						50	
			End Se	meste	r Exai	ninatio	on Ma	rks					50	
Course)		The obi	ective	of the	course	is to d	levelor	an in-	depth u	Inderstan	ding of	the	
Object	ives		operatio	on of n	nicroco	ontrolle	ers, ma	chine l	anguag	ge prog	ramming	& inter	rfacing	
			techniq	ues. St	udents	s will be	e able	to inter	face th	ne micro	ocontroll	er with	the I/O)
			devices	to dev	velop s	imple a	pplica	tions o	n micr	ocontro	oller-base	ed syste	ms	
Course	2		1. To	unders	stand th	ne inter	nal arc	chitectu	ire and	pin co	nfigurati	on of 80)51	
Outcor	nes		Mic	rocon	trollers	S.								
			2. To	unders	stand a	nd acqu	iire kn	owledg	ge in p	rogram	ming 805	51.		
3. Acquire the knowledge of instruction set and addressing modes of 8051.														
4. Analyze the concept of serial communication and interfacing the external											l			
devices with the 8051.														
	DO	D	Mar D DO	Mapping of Course Outcomes with Program Outcomes										
	PO 1	P		PO	PO 5	PUo	PO 7	PU o	PO	POI	POII	2	P5	PSU 2
	I	2	. 3	4	3		/	ð	9	U		2	UI	<u> </u>
CO1	3	3	3	3	1	2	0	1	1	0	0	2	3	2
CO2	3	3	3	3	2	2	0	1	1	0	1	2	3	2
CO3	3	3	2	2	2	2	0	1	2	0	1	2	3	2
CO4	3	3	3	2	3	2	0	1	1	0	0	2	3	2
						Un	it-I						1	0 hrs
Microo	contro	ller	8051 : In	troduc	ction a	nd histo	ory of 1	nicroc	ontroll	ers. Fea	atures of	8051mi	crocon	troller.
Block of	liagrai	n oi	f 8051- F	Flags a	nd pro	gram s	tatus v	vord (F	PSW), 1	accumu	ilator and	l B regi	ster, pr	ogram
counter	and L	Jata	Pointer.		0 D(1 1	- 41-		1			
descrip	ry org	gani f nii	zation :	KAM 1 func	& KU	JM, reg	gister	danks,	stack	and sta	tion Inte	er, Pin	Out dia	agram-
Timers		i pi	is, specia	II TUIIC		egisters	(SI'K)	5), 1/0	port of	Igamza	uon, me	inupis,	Count	
Timers						Uni	it-II						14	4 hrs
Instruc	ction S	Set	of 8051:	Class	sificati	on of i	instruc	tion se	et - Da	ita tran	sfer grou	ip, arith	metic	group,
logical	grou	р,	single b	it, br	anchin	g grou	ıp, C	ALL	and R	ET in	struction	s and	their	usage.
Addres	ssing	moo	les : Im	media	te, reg	ister, d	lirect,	registe	r indir	ect and	d indexe	d addre	ssing 1	nodes.
Access	Accessing the data from internal and external memory. Signed number concepts, generating relative													
address for loops.														
D	•		0051 11	•	A	<u>Uni</u>	<u>t-III</u>	T	4	4	- 0071		12	2 hrs
Progra	Programming 8051 Using Assembly Language: Introduction to 8051 assembly language													
prograf	uuung	5- 7- di	rectives	Progr	ame	additic	n cul	tractic	n mu	ltinlica	tion (wit	h & w	ithout 1	MIII)
Data ty	Data types & directives. Programs - addition, subtraction, multiplication (with & without MUL),													

division (with & without DIV), sum of natural numbers., block transfer, finding smallest and biggest number from a set of numbers. Concept of subroutine & time delay programming.

<u>Unit-IV</u>	12 hrs
Fimer programming : Timer / Counter in 8051: Timer registers - Timer0, Timer1. Configu	ration of
ГМОD (Timer Mode), TCON (Timer Control) registers. Timer modes- Mode1, Mode2 progr	amming.
Counter	mode.

Serial communication: modes and protocols, RS-232 pin configuration and connection. Serial port programming (Transmitting a character, and receiving a character using serial communication).

Interfacing Data Converters with 8051: Digital to Analog converters and Analog to Digital converters.

RECO	RECOMMENDED BOOKS											
Title	Author	Publisher										
1. The 8051 Microcontroller and Embedded Systems	M.Mazidi, JG Maizidi	Pearson Education										
2. The 8051 Microcontroller	Kenneth J. Ayala	Pearson Education										
3. Microprocessors and Microcontrollers	N Senthil Kumar, M Saravanan, S Jeevananthan	Oxford University Press										
4. An introduction to Intel family of Microprocessors	James L Antonakes	3 rd Edition, Pearson Education										

MDEC-521															
					Mi	crocon	troller	Lab							
			L			Т		Р			Credits				
			0			0		2			1				
			I	nternal A	Assessm	ent marl	ks				50				
				End S	emester	Marks					50				
Cours	e	The aim	The aim of this course is to study and understand the practical aspects of the												
Objec	tives	microco	microcontroller applications. It also gives the insight into the interfacing of												
		microcontrollers with external devices.													
Cours	se 1.Students will be able to understand fundamental programming concepts of														
Outco	mes	microco	ontrolle	rs.				-	•	-	-				
		2.Stude	nts will	be able	e to hav	e an in-	depth k	nowled	lge on i	nterfacing	g the exte	rnal			
		devices	to the c	ontroll	ers.		1		C	c					
		3.Stude	nts will	be able	e to hav	e an in-	depth k	nowled	lge of a	pplving th	ne concer	ots on real-			
		time ap	plicatio	ns.					0		· · · · · · · · · · · ·				
		······	Mappi	ng of (Course	Outcon	nes wit	h Prog	ram Oı	itcomes					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	0	0	0	0	1	0	1							
CO^2	2	2	ů N	° 3	0	2	0	2	ů N	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	4														
CO3	U	U	3	U	U	3	2	U	U	3	3	2			

List of Experiments

PART –A(At least 6 experiments are mandatory)

Assembly Language Programming experiments using 8051 Trainer kit.

- 1. Data transfer/exchange between specified memory locations.
- 2. Largest/smallest from a series.
- 3. Sorting (Ascending/Descending) of data.
- 4. Addition / subtraction / multiplication / division of 8/16 bit data.
- 5. Sum of a series of 8 bit data.
- 6. Multiplication by shift and add method.
- 7. Square / cube / square root of 8 bit data.
- 8. Matrix addition.
- 9. LCM and HCF of two 8 bit numbers.
- 10. Code conversion Hex to Decimal/ASCII to Decimal and vice versa.

PART –B (At least 4 experiments are mandatory)

Interfacing experiments using 8051 Trainer kit and interfacing modules.

- 1. Time delay generation and relay interface.
- 2. Display (LED/Seven segments/LCD) and keyboard interface.
- 3. ADC interface.
- 4. DAC interface with wave form generation.
- 5. Stepper motor and DC motor interface.
- 6. Realization of Boolean expression through port.
- 7. Elevator interfacing.

PART -C (At least 2 experiments are mandatory)

Programming/interfacing experiments with IDE for 8051/PIC/MSP/Arduino/Raspberry Pi based interfacing boards/sensor modules (Direct downloading of the pre-written ALP/[•]C[•]/Python programs can be used).

- 1. Relay control
- 2. Distance measurement.
- 3. Temperature measurement / Digital Thermometer
- 4. Txr-Rxr interface.
- 5. Alphanumeric LCD display interface.

					C	M	DEC-	611	tom							
				[]			Г	JII OYSI		Р			Credi	ts		
				3		()			0			3			
		Sessio	nal Ma	rks								50				
		End S	emeste	r Exan	ninatio	n Mar	ks						50			
<u>Cours</u> Objec	<u>e</u> tives	The 1 comm	main fo nunicati	ocus of	f the costems.	ourse : The s	is on tudent	unders s will	tandin study	g the the	import variou	ance a s anal	and the	ories of digital		
		comm	nunicati	ion tech	niques	gener	ation,	detectio	on, trai	nsmissi	ion, an	d recep	otion m	ethods.		
Cours	e	1. Gai	n know	ledge a	bout the	e funda	amenta	l conce	epts of	comm	unicati	on sys	tems.			
<u>Outco</u>	mes	2. Ana	lyse Al	M, SSB	8, FM, a	ind PM	l transı	nissior	n and r	eceptio	n circu	uits.				
		3. Und	lerstand	l variou	is pulse	comm	unicat	ion sch	emes.							
4. Acquire knowledge about the basic concepts of digital modulation and demody											dulation					
		technie	ques.	C		4	• 41			4						
	DO1			ng of co	Durse o	utcom	es with	h prog	\mathbf{PO}	Utcom		DO12	DSO1	DSO2		
	101	102	105	104	105	100	10/	100	109	1010	1011	1012	1501	1502		
CO1	3	2	2	2	2	2	0	1	0	2	1	2	3	3		
CO2	3	3	3	3	2	2	1	1	2	2	1	2	3	3		
CO3	1	1	1	0	1	2	0	1	1	1	3	2	3	3		
CO4	2	1	1	2	0	2	0	1	1	0	1	2	3	3		
	Unit-I 12 hrs															
Intro	luctio	n: Co	ommuni	cation,	inform	nation,	mes	sage a	and si	gnals,	electr	omagn	etic sp	pectrum,		
classif	icatio	n of sig	gnals, pe	eriodic	and nor	i-perio	dic sig	nals, ar	nalog a	ind digi	ital sig	nals, de	etermin	istic and		
randor A mpli	n sigr itudo	ais, eie modul	ements	01 a col Definiti	nmunic	ression s	system	, moau M way	lation	and its Julation	types,	need I	or moa	ulation.		
bandw	ridth.	nower (content	s of sid	ebands.	and ca	arrier.	wav	e, mot	iulatioi	I muez	, nequ	ency sp	jectium,		
oundi	1411,		content	01 514	U	nit-II								12 hrs		
Angle	mod	ulation	n: Conc	cepts of	f angle	modu	lation,	theory	of fr	equenc	y mod	ulation	, math	ematical		
analys	is of	FM, sp	pectra o	of FM	signals	, narro	wbanc	ł FM,	wideb	and FN	M, pha	ise mo	dulation	n, phase		
modul	ation	obtaine	ed from	freque	ncy mo	dulatic	on, con	npariso	n of A	M, FM	l, and I	PM.				
Genera	ation	of AM	and FM	[waves	: Basic	princip	ple of A	AM ger	neratio	n, basio	c princ	iple of	FM gei	neration,		
varact	or dio	de mod	lulator.	DSB-S	SC, SSE	, their	compa	arison a	and are	eas of a	pplicat	tions.				
D 1	1		<u>a 1'</u>		U	<u>nit-III</u>	.1		1	11	<u> </u>		1'	<u>12 hrs</u>		
Pulse 1	modu.	lation: S	Samplii	ng proc	ess, san	npling	theore	m, nati	iral sai	mpling	, flat-to	op sam	pling, s	ampling		
messa	$\frac{11}{9}$	g, a ua Ise cod	le modi	a about	(\mathbf{PCM})	block	, anu i diaora	m of P	nu typ CM sy	icai ap	mantiz	ons, re	constru			
messa	50, pu	150 000		nution	(1 (11)),	Unit	-IV			stem, t	1001112	ation.		12 hrs		
Elem	ents	of digi	ital con	nmuni	cation:	Block	c diag	ram of	digit	al com	munic	ation s	system,	digital		
repres	representation of analog signals, advantages, and disadvantages of digital communication system,															
Digit	al car	rier m	odulati	on tech	nniques	: Intro	duction	n, ampl	itude s	hift ke	ying (A	ASK), A	ASK sp	ectrum,		
ASK	modu	lator, f	requend	cy shift	keying	(FSK)	, PSK.						1			
L																

Department of Electronics & Communication

Page 8

J.S. Ubhi

Digital carrier demodulation techniques: Coherent ASK detector, non-coherent ASK detector, non-coherent FSK detector, coherent FSK detector.

,		
RECO	MMENDED BOOKS	
Title	Author	Publisher
1. Communication Systems	Sanjay Sharma	S.K. Kataria & Sons
(Analog and Digital)		
2. Electronic Communication	J. Kennedy	Tata McGraw Hill
Systems		
3. Electronic Communications	Roddy and Coolen	Prentice Hall of India
4. Principles of Communication	Taub and Schilling	Tata McGraw Hill
Systems		

MDEC-621 Fiber Ontics														
				L			T	opues		Р			Credit	5
		F		3			1			0			4	5
			Session	al Ma	rks					•			50	
		F	End Se	meste	r Exai	ninatio	on Ma	rks					50	
Cours	<u>se</u>		To be f	amiliar	with t	the oper	rating	princip	les of f	fiber op	tics chara	acteristi	cs and	optical
<u>Objec</u>	tives		compon	ents fo	or fiber	commu	inicati	on syste	ems. A	nalyzat	ion of vai	rious no	nlinear	effects
			in optica	al fibre	and pe	erforma	nce of	Optica	l source	es and c	letector. I	Describe	e the ha	rdware
			i.e. opti	cal sou	rces, d	etectors	s and a	mplifie	ers of fi	bre opt	ic comm	unicatio	n syster	ms and
			familiar	with	the in	stallatic	on of	fibre o	ptics co	ommun	ication n	etwork	for rea	al time
application.														
<u>Course</u> 1. Learn basics of optical fiber and other components for optical communication system of the second se											system.			
<u>Outcomes</u> 2. Analyze the various nonlinearities in optical communication system.														
			3. Appr	eciate	the lon	g-haul o	comm	unicatio	on achie	eved by	using op	tical am	plifier.	
4. Describe the various optical network topologies.										1 1 .				
			5. Use t	he app	propria	e state-	of-the	-art eng	gineerii	ng refer	ences and	d resour	ces nee	eded to
			Mapping of Course Outcomes with Program Outcomes											
	DO	DC				PO6		DOS		ram U DO1	PO11	DO1	DSO	PSO
	1	2		4	5	100	7	100	109		1011	2	150	130
CO1	2	2	3	3	3	0	2	1	0	0	1	3	2	3
	2	2	2	2	2	<u> </u>	0	1	2	0	2	2	2	2
02	3	3	3	3	3	2	U	1	2	U	4	3	4	4
CO3	3	3	2	2	3	0	1	1	2	0	0	3	2	2
CO4	3	3	3	3	2	1	2	1	2	0	3	3	1	1
	•			•		Uı	nit-I		•	•			1	0 hrs
Introd	luctio	n to i	fiber op	tic: His	storical	of fibe	r optic	s, block	c diagra	m of fil	per optica	l comm	unicatio	on, key
elemen	nts of o	optic	al fiber	system	, stand	ard for	optica	l comm	unicati	on.				
Optica	al fibe	ers: 1	Basic op	tical la	aw and	definit	tions,	fiber ch	naracter	ristics a	ind transi	nission,	, total i	nternal
reflect	ion, ci	ritica	l angle,	numer	ical ap	erture, 1	modes	, Types	of fibe	ers: sing	gle-mode	and mu	iltimod	e fiber,
step-11	idex ai	nd gi	aded-110	dex fib	er, nun	nerical	apertu	re.						4.3
A 44				• •		<u>Un</u>	<u>it-11</u>	1			, , .		14	4 hrs
Atten		anc	dispers	SION : <i>P</i>	Attenua	tion cat	uses ai	nd mea	sureme	nt of at	tenuation	i, intrins	sic abso	orption,
extrins Nonlin	sic abs	sorpt	ion, ben	aing io	od Dui	Linear :	scatter	ing los	ses: Ka	iyleign	Scattering	g and N Saattari	lie scai	ttering,
(interm	lear s	calle	nng: St		ed Bri	noum	scatter	ing an	a sum	lulated	Kaman	Scatteri	ng disp	persion
(intern	noual		mermou	ai).		Un	+ TTT						1/) hng
Ontice	Ontical source and detectors: Energy hands intrinsic and arthringia material. D.n. junction, direct and													
indire	indirect band gaps LED structure material and quantum afficiency LASED diadas principle of													
operat	ion la	u ga ser d	iode rate	>, suu > equat	ions a	ijantiim	effici	ency D	IN nho	to deter	Materia	walanch	, princ. ne nhoto	ndiode
photo	photo detector noise, detector response time.													
Photo					- <u>r</u> 5115 (Un	it-IV						1	2 hrs

Optical amplification: Introduction to optical amplifier, characteristics of semiconductor optical amplifiers (SOAs) and Erbium doped fibre amplifiers (EDFAs).

Optical networking: Introduction to the signal sampling and sampling theorem, optical time division multiplexing, (OTDM), Introduction to the signal interference, constructive and destructive interference, wavelength division multiplexing.

R	ECOMMENDED BOOKS					
Title	Author	Publisher				
1. Fiber-Optic Communication	G. P. Aggarwal	J. Wiley & Sons. 2nd Ed.,				
Systems		1997				
2. Optic Communication System	ns Mynbaev	Pearson education, 2001,				
3. Optical Fiber Communication	n Gerd Keiser	McGraw Hill, 5th edition				
		2013				
4. Optical Fiber Communication	n Senior	PHI				

MDEC-621 Fiber Optics lab													
			L			Т		Р		Cr	edits		
	-		0			0		2			1		
	-	Interna	l Assess	sment m	narks						50		
	-	End Ser	mester]	Marks							50		
Course Object	e ives	The aim optics. I commun student	t of this t also ginication	course is ves the is and their n and even	s to stud insight ir mitig valuatio	dy and u into cha ation. F	indersta iracteriz inally, i dern on	and the presence of the presen	practical f multip ovide p mmunic	l aspects le optica latform	s of the al for the etworks	fiber	
Course Outcor	e mes	1. 1 2. 1 3. 1	 Understand the basic operations in fiber optical communication networks. Able to understand the various losses experienced by optical signal inside the optical fiber. Able to establish the optical fiber communication link 										
		M	apping	of Cour	rse Out	comes	with Pr	ogram	Outcon	nes		1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	
CO1	2	0	0	0	0	1	0	2	0	<u>0</u> 3	1	2 0	
CO2	2	2	0	3	0	2	0	2	0	3	2	0	
	-			0					0			•	
003	U	U	3	U	U	3	2	U	U	3	3	2	
List of 1. 2. 3.	Exper To sp Evalu To de	Deriments: splice the single mode fiber using fusion splicer. aluation of the effect of various fiber cutting methods on fiber splicing loss. detect the length of the fiber using optical time domain reflectometer method.											
4. 5. 6.	To stu Chara Measu	To study and monitor the propagation of laser signal in various optical mediums. Characterization of the laser diode and photodetector. Measurement of the optical fiber attenuation.											
7. 8. 9.	 7. Measurement of the dispersion in optical fiber. 8. Design of the single point to point optical fiber communication link. 9. Evaluation of the power budget in optical fiber communication link. 10. To study the characterization of Erbium doped fiber complifier. 												
11	. Desig	n of the	waveler	igth mul	ltiplexe	d optica	l comm	unicatio	on syste	m.			

MDEC 711														
Signal Processing														
				L			<u>T T T T T T T T T T T T T T T T T T T </u>		P			Cree	lits	
	3				0		0		3					
		Sessional Marks									50			
	End Semester Examination Marks								50					
Cours	se	This course covers the concepts and techniques of modern digital signal processing												
<u>Objectives</u> which are fundamental to all the signal/speech/image processing, applications. T									s. The					
course starts with a detailed overview of sampling and reconstruction of sign										gnals,				
		repre	representation of the systems by means of differential equations, and their analysis											
using Fourier and z-transforms. The methods for spectral analysis of discrete									e-time					
signals are discussed next and principal methods for design of FIR and IIR filters,									ers,					
Course 1. Describe the process of sampling mathematically and articulate its ber							benefit	is and						
Outcomes limitations in modern engineering applications								no and						
2 Use and manipulate representations of discrete-time signals in both the time and frequency domains, apply various techniques such as group of Ferrier transformer										forms				
		f	or sign	al nroc	essino	annlice	ations	teenni	ques s	ucii as .	L- and	round	1 trans	1011115
		3 D)escrib	e the c	haracte	eristics	of sto	chastic	signa	ls and i	nrocess	es usi	nø stat	istical
		n n	neasure	es, and	apply t	them to	o mode	l real-v	vorld s	systems		00 401	ing stat	lotioui
		4. W	4. Write MATLAB code to perform signal processing functions, to produce a high-											
		le	evel pro	ogram	for real	l-world	l use	0 1		C		1		U
			Map	ping of	f Cours	se Out	comes	with l	Progra	ım Out	comes			
	PO1	PO2	PO	PO	PO	PO6	PO	PO	PO	PO10	PO1	PO1	PSO1	PSO2
			3	4	5		7	8	9		1	2		
CO1	3	3	2	1	2	1	1	1	1	0	2	2	3	2
CO2	3	3	3	2	1	1	2	1	1	0	1	2	3	2
CO3	3	3	3	2	2	2	2	1	1	0	2	2	3	3
	Č	•	•	-	-	_				°	-	-		
CO4	3	3	3	3	3	2	2	1	1	0	3	3	2	3
Unit-I 12 hrs														
Sampling and Reconstruction: Sampling theorem, aliasing, quantization, sampled data systems, cardinal (Whitaker) reconstruction, zero-, first-, second-order hold reconstructors, interpolators, non-resetting reconstructors, metabol filtering. Interpolation and designation basic components														
of dsp systems.														
Discr	ete-Ti	me S	vstems	: Line	arity a	nd tim	ne inva	riance	. impr	ilse res	ponse	fir ar	nd iir f	ilters.
causality and stability, fir filtering and convolution: block processing methods, convolution, direct														

causality and stability, fir filtering and convolution: block processing methods, convolution, direct form, convolution table, lti form and matrix form, transient and steady-state behavior, convolution of infinite sequences, hardware realizations and circular buffers

Unit-II12 hrsDiscrete-Time Signal Processing: The z transform, difference equations, relationship between
F(z) and F*(jw), mappings between s-domain and z-domain, inverse z transform. Discrete-time
stability. Pole/Zero Designs, First-Order Filters, Parametric Resonators and Equalizers, Notch and
Comb Filters, Deconvolution, Inverse Filters, and Stability, Digital Filter realization.

Department of Electronics & Communication

<u>Unit-III</u>	12 hrs					
Discrete Spectral Analysis: The DFT and its relationship to the continuous FT	, the FFT and					
implementations (decimation in time and frequency), radix-2 implementation	ion, leakage,					
windowing. Uses of the DFT: convolution — (overlap and add, select savings), correlation.						
Random processes, power spectral density (PSD) estimation — methods of smoothing the						
periodogram (Welch's method, windowing the correlation function, etc). ARMA methods.						
Statistical Signal Processing: Linear prediction, adaptive filters (LMS), recursive least-squares.						
<u>Unit-IV</u>	12 hrs					
Real-Time Simulation Methods Using Difference Equations: Impulse-, step-, ramp-invariant						
simulations. Tustin's method, matched poles/zeros, bilinear transform methods. Error analysis.						
Filter Design — Continuous and Discrete: Butterworth, elliptic, Chebyshev low-pass filters.						
Low-pass design methods based on continuous prototypes. Realizations. Conversion to high-pass,						
	n to high-pass,					

sampling filters.									
RECOMMENDED BOOKS									
Title	Author	Publisher							
1. Digital Signal Processing	Proakis, John G., and Dmitris K. Manolakis	,Prentice Hall (2006), 4 th ed							
2. Discrete-Time Signal Processing	Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck.	Discrete-Time Signal Processing. 2nd ed.							
3. Digital Signal Processing	Mitra, Sanjit K	McGraw-Hill							